AD-A246
R Ilﬂlﬂmllltlll @
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

AN OBJECT-ORIENTED APPROACH TO
COMPUTER ARCHITECTURE SIMULATION

by
Kevin A. Fontes

September 1991

Thesis Advisor Michel L. Nelson

Approved for public release; distribution is unlimited.

| 2-05010
LG x <o 01D \\ll‘\l\l\\lhl\\ll\l\|\\\\I|\|\\l|\\||\\\!|\

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la REPORTSECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.

2b. DCLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
fa NAME OF PERFORMING ORGANIZATION 6b. OFFICESYMBOL | 7. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School glg Applicable) Naval Postgraduate School
6c. ADDRESS (city, state, and ZIP code) To. ADDRESS (city, siate, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a. NAME OF FUNDING/SPONSORING 6b. OFFICESYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If Applicable)
8c. ADDRESS (city, state, and ZIP code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENTNO. | NO. NO. ACCESSION NO.

11. TITLE (nclude Security Classification)
AN OBJECT-ORIENTED APPROACH TO COMPUTER ARCHITECTURE SIMULATION

12. PERSONAL AUTHOR(S)
FONTES, Kevin Anthony

132 TYPE OF REPORT 13, TIME OOVERED 14, DATE OF REPORT (year, month,day) | 15. PAGE COUNT
Master's Thesis FROM LY 1991 September 208

16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

17. COSATI CODES 18. SUBIECT TERMS (continue on reverse i necessary and identify by block number)
FIELD GROUP SUBGROUP Computer Architecture, Object-Oriented Programming, Simulation, Modeling,
Object-Oriented Design

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

An object-oriented approach to modeling and simulating computer architectures is presented. This approach yields a ‘generic'
class hierarchy that supports the simulation of basic computer microarchitecture components found in most computers. This is
accomplished by concentrating on the more generic concepts of processors, memories, registers eic., rather than concentrating on
a specific system. The 'generic’ class hierarchy is tested by developing microarchitecture simulators for two different
microarchitecture designs.

0. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION

X] uncLassFEDAUNUMITED || sAMEAsRPT. [| Dricusers Unclassified

B2 NAMEOF RESPONSIBLE INDIVIDUAL — 3. TELEPHONE (inciidc Area Coi) | 22c. OFFICE SYMBOL
Michael L. Nelson (408) 646-2026 CSNe

5D FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THLS PAGE

All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

An Object-Oriented Approach To Computer Architecture
Simulation

by
Kevin Anthony Fontes

Lieutenant, United States Navy
B.S., California Polytechnic State University University, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
September 1991

Author: z// Zég

Kevin A. Fontes

Approved by: MM 2.2

Michael L. Nelson, Thesis Advisor

ngm‘;jg_f %@@gﬁ

Robert B. McGhee, Chairman
Department of Computer Science

ABSTRACT

An object-oriented approach to modeling and simulating computer architectures is

presented. This approach yields a 'generic*class hierarchy that supports the simulation of

basic computer microarchitecture components found in most computers. This is

accomplished by concentrating on the more generic concepts of processors,

memories,

registers etc., rather than concentrating on a specific system. The 'generic' class hierarchy

is tested by developing microarchitecture simulators for two different microarchitecture

designs.

Aovession For /

NTI5 creel =4
DTIC Ta3 0
Unennounned]
Justification____.”.___,
By
D{s(r;bugﬁou/
Avoll-pility Coice
Avald éhéfﬁfm
Dist Spoctal i
. a/ ‘ o ‘l’_-
.0 ‘ '€<"T£P
i ;g@k

II.

TABLE OF CONTENTS

INTRODUCTIONcccituiiainnrtiniencercensesntassessrassasssassasssnsenssensanssnananas 1
A. OBJECT-ORIENTED PROGRAMMING.......ccccorturienrrnennrnnconcnncennanns 2
1. Object-oriented programming terminologycccceeeeeurerenensnnnnnns 2

2. Prograph......co.ceuieniiiiiiiiii e 4

B. COMPUTER ARCHITECTUREcccociiiuiiinniriniinniinniinncencennnenns. 12
1. Computer MicroarchiteCture.........ccuvveiiiiinieeniinienireiiieieeinannane, 12

2. Simulation of Computer ArchiteCtures...........oceeveuireareaneeaaennnnn. 18

C. OVERVIEWccccituiiimitnnriinicraetatrentsieestenietmsssnnssnsssssssssssnnne 19
REVIEW OF THE LITERATUREcccoceuttuiiiniinniinieniinrirensrscenscenens 20
A. SIMULATION OF COMPUTER ARCHITECTURES.ccceuinnnnnee 20
B. OBJECT-ORIENTED DESIGN.......ccctciiiiiiiinnnnnneictineesesssssnsesnenes 24
C. CONCLUSIONS.... .o ittitietirntiiertiiisticetentsrrasssesessrassasssennes 26
SOLUTION....cuurmtiiiiiitiinittiirieertiiiesrtistassssestetesiasesssnssasssacsssanaes 27
A. DESIGNING A ‘GENERIC’ MICROARCHITECTURE CLASS
21121921 236 5) OO 27
1. Identification of the Objects and Classes.........cccceerrenecrererenrecssans 28

a. Initial definition of the objects and classes...........c.ccceveurennenn. 28

b. Analysis Of The Object’s Variables.......cccceceeecrncrcscnnecaennn. 30

c. Analysis of the Object’s Methods..........ccccceiiiiiiininrnnnnn.. 31

2. Refinement of the Objects and Classes........cccooeereererercreneesronennens 31

a. Addition of Necessary Information.............ccccceeeeereceecceceesa 3}
b. Elimination of Redundant Information...........ccceeceeivereeceeceee 33
c. Determination of Class and Instance Variables............cccc........ 33

d. Identification of Composite Objectscoeeeuiereieniinaninnns 33

3. Organization of The Classes Into a Hierarchy.........ccccuuecenennee. 33

a. Analysis of the Implementation Languageccccccueunnn.n. 33

b. Construction of the Hierarchies.........cccoceiiiiiiiiiiniiiiannanann. 34

c. Review of the classes’ variables/methods............ccccceveunnnne. 37

B. IMPLEMENTATION OF TANENBAUM'S MICROARCHITECTURE.....37
1. Operation of the Tanenbaum Microarchitecture..............c..cocuvenennee. 38

2. Design of The Class Hierarchycccoiveeiiiiiiiiiinininnnennnneee. 41

a. Review and Modification of the General Class Hierarchy 42

3. Design of the Micro Simulator..........cooevveuiniiuniiiiniiniueinneniennes 43

a. Theuserinterface........cccoviriureinieiiniiiiiiniiieiiianececanennne. 43

b. Micro Simulator Program Structureccoeveniiinennnannne. 48

C. IMPLEMENTATION OF A SIMPLE COMPUTER (ASC)..........cc.c....... 50
1 Operation of the ASC Microarchitecturecccceevruiniiiniiaiannnns 50

2. Design of The Class Hierarchyc.cceieiiiiniinninieiiiniiinnniennnn. 55

a. Review and Modification of the General Class Hierarchy.......... 55

3. Designofthe ASC Simulator........cocueeierenieiirnnireiiiincesrecnenes 57

a. Theuserinterface........coccvuverininiuiiiiinininieiniiiiiiniinennee.. 57

b. ASC Simulator Program Structure............ccccceeeeeescneenceenne. 59

D. COMPARISON OF THE TWO SIMULATORS.........ccccceveimrnnsneiscnnean 60
) SR 6.7 0.7 7.9 1 PP 64

IV. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE

RESEARCH....ciiiiiiiiiiiiiiiiiiieniriireienri ittt ens s e s saceasas s s e aae 65
A. SUMMARY ...ttt s e e s e sas s en e 65
B. CONCLUSIONS.......ciitiitimieniitienetenseneastse s taneescnnenssranes 66

C. RECOMMENDATIONS FOR FUTURE RESEARCH............cc.cccuuuanee... 67

APPENDIX A coueeeeenreeneeeoseeeseeessmssesesseessesssesesssesssesseesssessssaseessseeseasesens 70

APPENDIX Boooorooeoveeeeesreesesseesesseessssessessssesseesssesssnsessssesssssesessensssesens 73

APPENDIX Coreoeoeeeeeeereresesenenne et s et 83

APPENDIX Dieoooveorveeeeeseeesoseeeseseessesssesssessessesmssesesenssessssesseseemse e 133

LIST OF REFERENCES......... . veovoeeeeesesesessseeseesssesssesesssesasmesesseseaseesessenes 195

INITIAL DISTRIBUTION LIST. ... ceoveveveseneeseeseeeeseessessecesmsessessessssesens. 197
vi

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9
Figure 1.10
Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12

LIST OF FIGURES

Example of Class Hierarchy and Class Attributesccocceeiennnnne 5
Example of Class and Instance Attributes...........coceeviviiineenaccccnnnnns 6
Inherited AHDBULESccrnieniiuiiniiiniiiriiiier e ecereeeaes 6
An Example of a Method Window..........cuureeeieeniennnenninnccnnennss 7
An Example of a Case Window..........covuveuiiniieiniiniinvneiininiincnnen, 8
An Example of a Local Operator Windowcccceiiiiiiiiiiiiiinnnnnnna 9
Message Passing.....c..coeieiierenuiminiiiiiiiiiiiieiiieieirceennaeaae. 10
Multiplexes, Persistents and Program Control............ccccccevieieninennen. 11
Data Path (Tanenbaum, 1984, p.127).....cccuveirininiiniiiiiieniininincnne. 16
Example Microarchitecture (Tanenbaumbaum, 1984, p. 132) 17
Class Definition................... .. 26
'Generic' Class Hierarchyccevviuieiiiiriiiiniiiiniiiiiiciinninnenenne. 35
Tanenbaum’s Microarchitecture (Tanenbaum, 1984, p. 132)............... 38
Microarchitecture Register Usescoceeuiiiiiiniiiniiiieiiiiiiiieninnaen. 39
COND Code Definitionscccetuiececinrunirearceiasesecssensesensanes 41
Micro Simulator’s Menu Bar.........cccccvvieiniiniiiiniiiiiiniiiinienn, 44
Sample Object Program Text Format..........ccoeovvininiiieieiineeninanennn. 4
The Define Memory Dialog BoXcocuvereiiiiieiiiiiiiiniiiinneienacenne. 46
The Micro Simulator Window.........uiiiiiiiininneiireniininnininiensene 47
Cycle Universal Methodcoceeiniiniiiiininiiiiiiiniienieenicanencans 49
Micro Simulator’s Persistentsooeveuveiiniiiiiiiiiiiuiiiiiininieninne. 50
ASC Microarchitecture Block Diagram (Shiva, 1991, p.229)............... 51
ASC Instruction FOormat..........ccccceviiiiirrvmnnenniiincninniisonseaccsnnenes 53

Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16

Block Diagram of ASC Microcontrol Hardwareccccocevieieennn... 54

ASC SImulator’s Menu Bar......cccoveiiiiniiiiiiiiiiriieriiieeeanseennnsens 57
The Define Memory Dialog Box (ASC)......cccocveeieiincnneiecvnnnnneens 58
The ASC Simulator WindoWccovviiiiiniineiinieneeeneceecseecenssoceennsns 59

ACKNOWLEDGEMENTS

I would like to thank MAJ Nelson for his thoughtful suggestions and help. Also
Amr Zaky for his helpful suggestions. Thanks are also in order for Lou Stevens who was
able to locate an appropriate microarchitecture design to simualte in this thesis. Also thanks
go out to two TGS programmers, Lynn McKaig and Mark Szpakowski for their help with
Prograph coding questions.

I would also like to thank my wife, Rebecca for her proof reading and support.

I. INTRODUCTION

Designing a new computer architecture is a complex process. This process produces
a complicated device, composed of many interdependent components. Since the final
product is a piece of hardware, it is expensive and time-consuming to design, test, alter,
and then re-test the various components.

It is difficult to directly measure the performance of new hardware as it is being
designed. Performance parameters include items such as how many memory accesses
occur and how many times the registers exchange data in a given time period for a given
program. In order to measure these parameters directly, costly monitoring equipment must
be connected directly to the hardware. The problems of monitoring and testing become
even more pronounced when evaluating Very Large Scale Integration (VLSI) Hardware, as
it may be impossible to connect external monitoring equipment to some of the internal
components. It is also important to test the effects that each component has on all others.
These effects can be both electronic and logical; only the logical effects are addressed in
this thesis.

One solution to the problem of component testing and hardware evaluation is to
simulate the new hardware in software. This allows separate testing of individual
components as well as testing of the complete system. A complete simulation
environment should model the architecture as closely as possible, yet remain as general as
possible. Reusability is the main attraction of using simulation for hardware and system
design.

The majority of computer architecture simulations in the past have been implemented
using conventional programming languages and techniques. This thesis examines the

advantages of implementing computer architecture simulation using an object-oriented (QO)

approach. Encapsulation of methods and variables facilitates the reusability of code,
inheritance and composition allow the building of more complex components and systems.
Two computer architectures have been simulated using Prograph! (Cox and Pietrzykowski,
1989), an object-oriented programming (OOP) language, as part of this thesis.

A. OBJECT-ORIENTED PROGRAMMING
1. Object-oriented programming terminology
It is assumed that the reader has at least some familiarity with object-oriented
programming concepts. This section provides a brief introduction to object-oriented
programming and terminology as applied in this thesis.
Object-oriented programming may be summarized by the following equation:
“object-oriented = objects + classes + inheritance” (Wegner, 1987, p.168)
The backbone of an object-oriented programming language is the object.
Objects are autonomous entities that respond to messages (operations) and have a state. An
object’s state is defined by its variables (attributes), and its operations are defined via its
methods (procedures). An object’s state can only be manipulated by its methods.
Therefore, to change an object’s state from the outside, a message must be sent to the
object telling it which method to invoke2.
A class is a template from which objects may be created (Wegner, 1987,
p-168). An object is an instance of a class. The variables making up an object’s state can
be divided into class variables and instance variables. A class variable is defined as a
variable that has the same value for all instances of a particular class. An instance variable

is one that has a unique value for each instance of a class.

1Prograph is a trademark of The Gunakara Sun Systems, Ltd (TGSSystems).
2This assumes an encapsulated approach; although most OOP languages support this idea, not all enforce
it.

For example, a class Person could be defined which has the instance variables
name (the unique identifier of this object), and where (the current location of the object),
and a class variable People (a list of names of all the instances of this class)3. Three

instances of class Person are:
(name: canniball,where: left, People: (caniball, canibal2, missionary1))
(name: cannibal2, where: right, People: (caniball, canibal2, missionary1))
(name: missioinary1, where: left, People: (caniball, canibal2, missionary1))

Even though these instances of Person each have a different state, they all share the same
operations, (e.g., walk, sleep, etc.), because they are all instances of the same class.

Inheritance allows the creation of classes of objects that are almost like another
class of objects with a few incremental changes (Stefik & Bobrow, 1986, p.40). This
results in a formal code sharing mechanism. A subclass inherits all of the variables and
methods defined for its superclass. A simple example of inheritance is when the class
person (instance variables: name, where; class variable; people methods: walk, sleep)
is inherited by class Cannibal. Thus Person is the superclass and Cannibal is the
subclass. The subclass Cannibal inherits all of the variables and methods of Person
(i.e., the code is shared); the user may also add other variables and methods in defining the
subclass Cannibal. The inheritance hierarchy can be many levels deep and complex.
Single Inheritance is when a class can have only one superclass (usually referred to simply
as inheritance). Multiple inheritance occurs when a class can have several superclasses.

A composite object (or aggregate object) is an object that contains other objects.
That is, its variables may themselves be instances of other classes. For example, an
airplane object can be defined as containing the objects wings, propeller, wheels, etc; the

wing object contains flaps, covering, cables, etc.

3This example is taken from a classroom project involving the implementation of the missionaries and
cannibals problem (CS 4114, Winter, 1990).

An abstract class is a class which does not have any instances (Nelson, 1990,
p-6)4, while a concrete class is one which does have instances. For example, if the class
Missionary and the class Cannibal are both subclasses of the class Person and no
instances of Person are allowed, then the class Person would be an abstract class.
However, both the subclasses inherit all of the variables and methods defined for the class
Person. If the classes Missionary and Cannibal do have instances, then they are
concrete.

Object-oriented programming also supports encapsulation. Encapsulation is the
strict enforcement of information-hiding (Micallef, 1988, p.13). Encapsulation refers to an
object’s ability to hide implementation details behind the object interface (i.c., the
operations/methods defined for the object’s class). When a message is sent to an object,
the object performs a method which may manipulate one or more of the object’s variables
without the message sender being concerned with how (or even if) those variables are
manipulated.

2. Prograph

All programs implemented in this thesis use the Prograph programming
environment on the MacintoshS computer. Prograph is a pictorial, object-oriented dataflow
language (Cox and Pietrzykowski, 1989, p..l). This environment was chosen because it is
pictorial in nature, it easily describes class hierarchies and variables, and it is easy to use.
The following discussion is not intended to be a tutorial in Prograph programming, but
rather to introduce the terminology and principles of Prograph.

A simple class hierarchy represented in the Prograph environment is presented

in Figure 1.1. There are three classes: Person, Missionary and Cannibal; each one

4 Abstract classes are not enforced by Prograph, or by any OOPL that we know of (i.c., it is only a

concept).
SMacintosh is a trademark of Apple Computer, Inc.

depicted by a hexagonal shaped icon in the classes window. The icon is divided in half; the
left half represents the class and instance variables and the right half represents the methods
associated with the class. To open the associated window the user ‘double-clicks’ on the
desired half of the icon. The links between class Person and the classes Missionary and

Cannibal indicate that Person is a superclass of the classes Missionary and

Cannibal.
& Classes
O
Missionary Cannibal
O
Kal [

Figure 1.1 Example of Class Hierarchy and Class Attributes

The attributes window of the class Person is presented in Figure 1.2. In
Prograph a class variable is referred to as a class antribuse, and an instance variable is called
an instance attribute. An attributé window is denoted by the inverted triangle next to the
window name. The class person, in Figure 1.2 has two instance attributes (name &
where) and one class attribute (People). Those attributes above the horizontal line
represent class attributes and the attributes below the line represent instance attributes. A
class attribute is represented by a small hexagonal icon similar to the class icon and an

instance attribute is represented by an inverted triangle.

V Person
("Canni* “M... g
People
“Citizen X* .
\Y%
name
“LeftBank”
V -
where N
Kal | (=[5

Figure 1.2 Example of Class and Instance Attributes

An example of inherited attributes is presented in Figure 1.3. An inherited
antribute is represented by the normal attribute icon with a smail downward pointing arrow.
Therefore, the attributes People, name, and where are inherited from class Person.

The attribute level is defined in the class Cannibal.

V Cannibal
Q)

(2

People
“Citizen X"

name
“LeftBank”

4

where
1

\Y

Tevel =
W

& ()

Figure 1.3 Inherited Attributes

A class’ methods are represented in the method window as shown in Figure
1.4. The icon with a small dataflow diagram inside it next to the window name indicates
that it is a method window. The six icons inside of the window depict six different
methods defined for the class Person. Double-clicking on a method icon will open the

associated methods case window.

‘@ Person
c
?me? ounter Move logll

Figure 1.4 An Example of a Method Window

A case window opened from a method icon is presented in Figure 1.5
(descriptive comments are in bold type outside of the window). The window title is
composed of the class name and the method name. In the example the case window shows
the method make from the class Cannibal. All case windows have input bars and output
bars. These bars are used to pass data into and out of the method. The numbers 1:1 in the
window title indicate that this is the first case window of one case(s). When there are
multiple cases of a method, all cases must have have the same number of inputs (terminals)
and outputs (roots) on the input and output bars. The number of terminals or roots is
defined as arity. Since Prograph is a dataflow language, the data flows from the top to the
bottom of the case window, following the datalinks.

Cannibal/make 1:1 —{-Toput Bar
Instance >
Generator) CLLILSSLLIISS LIS I SIS SIISSSLISIS SIS = |
)/ y where Datalink
-
Roots Terminals

A

Set Operastions

Local Operato ’—P[Elpdate Class Mtn‘bu‘teal

Cannibal Instance

*] (A

Output Bar

Figure 1.5 An Example of a Case Window

The shape of the icon indicates what type of operation will be performed and the
name inside of the icon determines which class, attribute, or method is executed. The icon
with convex left and right sides (the top leftmost operation, containing the word
Cannibal) of Figure 1.5 is a instance generator. This generator is used to make an
instance of the class Cannibal . The two operations with convex left sides below the
Cannibal instance generator, are set operations. The set operation is used to set the value
of an instance or class attribute. The text inside the icon determines which attribute will be
set. The left terminal is used to pass the particular instance to be operated on, and the right
terminal is used to input the value the instances attribute is to be set to.

The Update Class Attribute operation in Figure 1.5 is a Local Operator.
Local operators are used to reduce the clu.ttcr in a case window, and are defined by the
programmer. The operations inside of the local operator icon are still logically inside of the

case window in which it resides; they are just grouped together in an attempt to make the

window more readable. Figure 1.6 shows the contents of the local operator Update
Class Attribute from the Cannibal/make window. Notice that the arity of this
window is exactly the same as the arity.in the associated local operator icon in the

Cannibal/make case window.

Update Class Attribute
23
u
» Cannibal Instance
SSLSSSSSSSISSISS LSS SSSSISSS SIS LSS 6
Kol |

Figure 1.6 An Example of a Local Operator Window

The first operation labeled People (concave left side) in Figure 1.6 is a ger
operation. This get operation takes a Cannibal instance as input and gets the value of the
People class attribute. The operation in Figure 1.6 labeled attach-r is an example of a
primitive operation. Primitive operations are supplied by the Prograph programing
environment, and are represented by an icon with a horizontal line near the base of the icon.
In this case the instance of Cannibal coming into the window is added to the People
class attribute (which is a list) with the attach-r primitive. The People set operation
(convex left side) simply indicates that the value of the People class attribute has been set
to the value returned by the attach-r operation.

There are several ways of calling a message to invoke a desired method in

Prograph. Figure 1.7 gives three examples of the various representations of message

calling. The text inside the operation boxes represents the message being sent. The
terminals above the box are the data passed to the method, and the root leaving the box is
the result of invoking the method. Regardless of the form of message passing, if the
method is not found the environment searches for a method higher up in the inheritance
tree. Operation A is an example of an explicit reference. This message tells the class
Cannibal to invoke the make method. Operation B is an example of a data-determined
reference. The message will invoke the method make from the class that matches the
instance presented at the left input terminal. Operation C is an example of a context-
determined reference. This type of message will invoke the method make from the class

that matches the case window in which the operation resides.

%ani‘.ln: Il:al:e%

Figure 1.7 Message Passing

Progaph has two ways to handle persistent® data. Class attributes are used to
store persistent data that is related to a specific class. This data can only be accessed via an
instance of that class. Persistents are used to store persistent data that is not class specific.
These persistents can be accessed globally. An example of the use of a persistent is
presented in Figure 1.8. The persistent is represented by an oval icon (Total in Figure
1.8). Referring to Figure 1.8, the top persistent (with the root) is being read, and the
persistent on the bottom (with the terminal) is being written to. Since Prograph is a
dataflow language, program flow follows the datalinks. Using Figure 1.8, the first
pctsistent Total is read, then the data is used and manipulated in the present? operation,

SPrograph uses the term persistent to describe data which is not part of a specific object.

10

followed by the results being stored back into the Total persistent. There is only one
Total persistent, but it can be read and written as often as the programer specifies.

Cannibal/multi 1:1
LSS SIS SIS SSSS ST ST LS SIS S ST SIS IS S S —Gq
//////.//////////////////////////////. 3

Figure 1.8 Multiplexes, Persistents and Program Control

Program flow control, an important aspect of any language, is implemented
using case control. As previously mentioned, a case window can have multiple windows.
When a case has multiple windows there must be a method to control which window will
be accessed. When Prograph calls a method containing multiple case windows, it will
always start execution at the first case window of the series by default. If the case window
has any case control it will check that control first. Figure 1.8 also presents an example of
a typical case control. The box (labeled X) in the upper right of the window is a simple
case control. The X indicates that if the data that arrives at the control’s terminal does not
match what is in the control’s box then control will transfer to the next case window of the
series. There are other control symbols to perform the following: jump to next case if

match, and terminate this method if match/no match.

11

A multiplex is the multiple execution of a method, which is represented as an
icon that looks like a stack (i.e., several boxes, one on top of the other). The present?
operation in Figure 1.8 is an example of a multiplex. There are several ways of controlling
the number of times a particular multiplex is executed. The present? multiplex in Figure
1.8 has two multiplex operators. A method becomes a multiplex when one of the roots or
terminals is changed from a simple root/tem'linal to a list or loop root/terminal. The ellipses
terminal on the upper left of present? is a list terminal. This terminal will cause present?
to execute once for each element of a list presented to its list terminal. The root/terminal pair
of arrows on the right of present? is a loop multiplex. These always come in pairs. This
allows the multiplex method to pass variables from one execution of the multiplex method
to the next execution. The data is passed to the method on the first execution, the method
uses/alters this data and passes it out of the loop multiplex where it will be passed to the
input of the present multplex method as its execution continues or it will be passed as
output upon termination.

This section has presented the most basic essentials of Prograph to give the
reader enough information to understand the Prograph programs used in this thesis. For

more information on Prograph, please see the Prograph Reference Manual (The Gunakara
Sun Systems, 1990).

B. COMPUTER ARCHITECTURE
1. Computer Microarchitecture
The microarchitecture level of a computer is the level that directly interacts with
the actual hardware. This is the level of the computer that will be simulated in this thesis.
We chose this level because it is easy to pick real components and model them as software
objects. The components defined in this section are implemented as objects/classes in the

following chapters.

12

Most computers have several common components, including: registers,
memories, buses, arithmetic logic units (ALUs), and multiplexers (muxs). The computer’s
microacrchitecture is controlled either by a microprogram or by hardwired decoding. This
thesis discusses only microarchitectures that are controlled by a microprogram. The
purpose of the microprogram is to “control the machine’s registers, memories, buses,
ALUs, and other hardware components” (Tanenbaum, 1984, p.118). This section provides
a brief introduction to the microarchitecture level components of a typical computer.

All processors (often referred to as the central processing unit or CPU) contain
at least a small number of registers. Registers are located on the CPU chip and are used to
store data. A register is characterized by the number of bits of data it can hold. For
example, if a register can hold 16 bits it is referred to as a 16 bit register. The register’s
short access time is due to the simple circuitry required to determine the register being
accessed (i. ¢., a relatively small number of logic gates), and also because the register is
contained in the CPU chip. The CPU typically has general purpose registers which are
used for storing and retrieving data encountered in instruction execution, as well as
registers which have some specific function(s), such as the program counter (PC), stack
pointer (SP"), instruction register (IR), and accumulator (AC). All of the registers together
are often referred to as a register bank..

A computer’s memory is similar in construction to a register bank, except that
the memory is much larger and is located some distance from the CPU (i.e., usually not on
the CPU chip itself); memory is also slower than registers. Typically, a memory bank

consists of many thousand locations. Like registers, memory is characterized by the
number of bits of data each location can hold. It is also characterized by the number of
memory locations possible. One of the reasons that memory is slower than registers is that

it has many more locations which can be accessed. The larger the number of locations to

13

access; the more digital logic required to determine the access point. The increase in the
amount of access Jogic increases the time d;alay of the signals, thus producing a time delay
for the desired data to be returned.

Data passed into memory is communicated via the Memory Buffer Register
(MBR), while the desired address of the data (location of where the data is to be stored) is
loaded into the Memory Address Register (MAR). A write control is activated causing the
value in the MBR to be stored into the desired memory location. To read a value from a
particular location in the memory the process is reversed using a read control. Thus, the
memory bank interfaces with the rest of the world via an MAR, MBR, and two control
signals.

A bus is used to transmit signals from one device to another. Physically, a bus
is a collection of wires that transmit a group of signals in parallel from one location to
another. Many devices can be physically connected to the same bus. The bus is considered
to be an inert device. That is, if data is electrically placed on one end of the bus, the
information will show up on the other end. The bus itself does not actively control the
signals; rather, the bus is controlled by the equipment connected to it. If multiple devices
attempt to transmit simultaneously, the values of each bit of the bus will be garbled and the
data will be useless. Thus, many devices can simultaneously read data from the bus, but
only one device may be transmitting at any time. Therefore, there arises a need for some
central controlling device to synchronize the control of all devices writing on the bus. This
will be discussed later.

Devices may receive inputs from several other devices/buses, but can only
process one input at a time. This gives rise to the need for a multiplexer. A multiplexer is a
device that has several data input lines and a single data output line. It also has several

control inputs that determine which data input will be selected. The output of the

14

multiplexer is connected to the input line of the device, and data selection is based on the
multiplexer control signal. A multiplexer has 2" data inputs and therefore has n control
inputs.

The heart of the computer is the Arithmetic Logic Unit (ALU). The ALU
typically has two inputs for data, one output for data, several control inputs, and several
result output indicators. The control inputs are used to select the operation(s) to be
performed on the input data. Standard ALU operations typically include: AND, OR,
NOT, and ADD. The result output indicators are simple one bit signals which indicate that
output of the ALU is negative, zero, overflow, etc. Shifters are used to shift the bits of an
input to the left or right depending on the input control signals. The shifter may be placed
at the output of an ALU, or it may be a part of the ALU itself.

This section has addressed the many components typically found in the data
path side of a microarchitecture. A typical data path taken from Tanenbaum (Tanenbaum,
1984, pp.127) is shown in Figure 1.9. It includes a bank of registers, an ALU, a shifter, a
Memory (including MBR and MAR) and an Amux (multiplexer).

15

A bus B bus
Cbus

.....

-1
JAMAS

SMAS!

X

Address out

Mar
Memory

A latch B latch Ly

5

Mbr
Data in

B

Ao AMUX
Write N
7\ Yo
1

So -
) Shifter

Data out

Figure 1.9 Data Path (Tanenbaum, 1984, p.127)

Figure 1.9 shows many devices along with input signals (Fg, F1, S, etc), and
output signals (N and Z). The input signals are generated from the control side of the

16

microarchitecture. The control side is presented along with the data path in Figure 1.10.
The control devices consist of: the Micro instruction register (MIR), the Control Store, and

the Microprogram counter (MPC).

remerepi----i-d

.---.‘r-..;.h-- ------ -3 C'mk

E E E ===q2 sub.

b v

' ' ' 'y

' ' ' : '

bl poteemmee

' ' fyYY) '

p e ;

' : [registers '

| 1 iR
; t M| L {HIB[A[DIRINf C | Bl
' UINU

1 X

Micro

Shifter (=

Figure 1.10 Example Microarchitecture (Tanenbaumbaum, 1984, p. 132)
The control store holds the entire microprogram, which consists of
microinstructions. When a microinstruction is read from the control store, it is placed in
the MIR. The MIR has output leads from each control field to all of the control inputs of

each device in the data path side of the machine. The sequence of microinstructions is

17

controlled by the MPC. The MPC sends its counter value to the control store, the
appropriate microinstruction is retrieved from the control store and placed into the MIR,
and then the MPC is incremented or changed depending on the output status signals of the
ALU. This process repeats as the microprogram execution continues.

This section has introduced the many devices found in a typical computer
microarchitecture. The data path consists of registers, memory, ALU, shifter, buses and
multiplexers. It is controlled by the microprogram which is implemented in the MPC,
control store, and MIR. Each microinstruction controls the entire microarchitecture’s
device control inputs. It is the continuous cycling of the microprogram which controls the
fetching, decoding, and executing of higher level instructions. These components will be
seen again in Chapter III where théy will be'simulated as software objects.

2. Simulation of Computer Architectures

Simulation of computer architecture is the use of a computer program on one
computer to model the performance of another computer. Papazoglou, et. al. says that
“Simulative modelling, like every other modelling approach, does offer the option that the
working representation of a not yet existing system is possible” (Papazoglou, Pawlak, and
Wrona, 1989, p.1). In the past, computer architectures have been modeled using classic
structured programming languages. Only recently have object-oriented languages begun to
be used. To model a specific architecture via a conventional language, a specific program
was written to model that architecture. Whenever a simulation of a new architecture was
needed, an entire new program was written to support the simulation. Papazoglou et. al.
outlines the following requircmenis for modeling an architecture (Papazoglou, Pawlak and

Wrona, 1989, p. 213):
+ the model must have the same logical structure as the modelled computer system.
* it must comprise an integrated model of both the complete system hardware and
software.

18

+ it should be able to model the different parts of the system at different levels of
abstraction.

» it should allow different sets of output statistics each time it is rerun with a new set of
input parameters, and like any well disciplined good program it is structured,
modular, reliable, efficient and extensible.

Modeling a computer architecture in an OOP language fulfills all four of these
requirements, and particularly excels with the last two.

C. OVERVIEW

Chapter I is a detailed survey of the literature pertaining to previous work completed
in- the areas of computer modeling and object-oriented design. Chapter III is a detailed
discussion of the implementation of the computer programs (developed in Prograph)
simulating various computer architectures (the actual code is included in appendices C and
D). Chapter IV presents the conclusions of this research effort, along with

recommendations for future research and a summary of the thesis.

19

II. REVIEW OF THE LITERATURE

Object-oriented simulation of computer architectures is still in its infancy. The
majority of the effort is in the simulation of multiprocessor systems. Most of the simulator
systems that were reviewed have a very simple text based user interface; only one group is
working on a simulator in which the main concern is the user interface and its ease of use.
Only one group was found to be interested in hardware simulation for classroom
instruction purposes. Some groups emphasize the usefulness of the object-oriented
approach for the reuse of code.

To date, there is no system that incorporates reusable objects, has an intuitive user
interface, was developed with commercial software, and runs on a commercially available
microcomputer. Of course, a system that meets these objectives would also be economical
enough to be available for classroom use. This is because most systems are not being built
using commercially available software. This section discusses the various research in the

field of architecture simulation, with an emphasis on object-oriented approaches.

A. SIMULATION OF COMPUTER ARCHITECTURES

A system developed at Acadia University uses a Pascal-like Register Transfer Level
Language (RTLL) that operates on microcomputers (Tomek, 1985). This system was
designed for the instruction of computer organization and architecture. They point out there
is currently very little educational software in this field. Their package allows the user to
“write descriptions of simpler CPU’s, controllers and similar devices and experiment with
their operation” (Tomek, 1985, p.493). The package consists of the following modules:
RTLL description editor, RTLL simulator, Screen layout generator, Memory file generator,
System description generator, and Organization descriptor.

20

The RTLL description editor is a syntax-directed editor used to develop an RTLL
program. The RTLL simulator executes the program developed by the RTLL description
editor. The Screen layout generator “allows the user to specify the format in which the
results of the simulation are to appear on the screen” (Tomek, 1985, p.494). The memory
file generator allows manipulation and loading of the memories’ contents. The system
description generator specifies CPU interfaces with other components. Finally, the
‘organization descriptor is used to specify the CPU organization and timing constraints.
Unfortunately they do not describe the methodology used in the development of the system
or the programming language used in its implementation.

| Object-oriented design has been applied to multimicrocomputer hardware and
software simulation in the development of the MUDS system (Papazoglou, Pawlak, and
Wrona, 1989). “MUDS constitutes an extension of the SIMULA language, and has been
designed for developing prototypes of distributed software and for appropriately simulating
the extension of these software prototypes on a model hardware” (Papazoglou, Pawlak,
and Wrona, 1989, p.215). Thus the MUDS system is used for the simulation of hardware
and software for multiprocessor computers. They introduce the design methodology used
in the development of MUDS.

The basis of MUDS rests on the development of classes used to represent hardware
and software. These classes are chosen such that “the structure of a designed
microcomputer system may be extended with an arbitrary number of instances of the
classes being modelled” (Papazoglou, Pawlak and Wrona, 1989, p.216). They emphasize
that a powerful simulator can be attained with an appropriate object-oriented language, but
itis essential that a proper implementation of object-oriented design techniques be used.

The authors also show that the advantages of an object-oriented language (data hiding,

21

abstraction, classes as templates, etc.) allow for a better representation of the
hardware/software being modeled. -

Modeling of a system can occur at various levels, For example, the microarchitecture
level, macroarchitecture level, etc. The Virtural Stack Machine, a programming system for
generating and interpreting code for von-Neumann machines is an example of one such
level or several levels (Frei, 1989). A virtual stack machine (VSM) simulator is used to
perform “VLSI netlist logic design rule checks” (Frei, 1989, p.5/1). This relatively simple
architecture, modeled at the macro level, consists of three major elements: a central
processing unit, a data stack, and a direct access data memory. The instruction set for the
central processor is implemented as methods in one of the classes in the hierarchy. This
research concluded, as with other similar research, that a class library is needed for the
many objects, and that object-oriented design techniques greatly reduce the coding effort.

Nearly all hardware simulators have a very simple user interface. Only one of the
systems reviewed considered the user interface as an essential facet of the simulation
model. A simulator has been developed that is used for the writing and debugging of
microprograms for hardware under design (Sugimoto, Abe, Kuroda, and Katou, 1988).
This system was developed in a LISP-based object-oriented language, VEGAMS, which
was also developed by the authors. The user interface presents a bus and component
structure which graphically represents the actual hardware. This graphical representation
allows the simultaneous display of the bus, register, and various other components as the
simulation progresses. Having all the pertinent data available on the screen allows the
microprogram developer to quickly realize mistakes and correct them immediately. Another
feature is the representation of data by color coding. The microprogram is displayed in an
assembly language format and an editor is provided for the system. This allows the user to

alter the microprogram and reenter it into the control store while remaining in a single
application.

One of the system’s major features is its ability to stop at a breakpoint and roll-back
the execution to some earlier time. This allows the user to examine the state variables at
that time. The user can alter any variables and change the microprogram and continue
exccution from that point. The roll-back capability is implemented by keeping a complex
linking of objects over time. Thus, to roll-back to a certain cycle number, the appropriate
pointer is referenced and its data is loaded.

Although some portions of code are hardware specific, a significant portion is
common to almost all computer architectures. It is claimed that developing simulators
using an object-oriented language lead to approximately 62% reusability of code for other
hardware simulations. As with other object-oriented applications, the design of the class
hierarchy is crucial to the extensibility of the code. (Sugimoto, Abe, Kuroda, & Katou,
1988, p.55)

Simulation efforts are not limited to only object-oriented or classical languages. The
simulation of concurrent real-time systems using the object-based language Ada has also
been investigated (Mulcare, 1990). In the design of real-time systems, “superficial design
descriptions” (Mulcare, 1990, p.184) are performed prior to attempted implementation. Of
course, this leads to problems that appear during construction of the system. A formal
design process followed by a comprehensive simulation of the system is easily attainable
using Ada task types to model the various processes involved. The firing of a Pr-T net
transition “may correspond to a task entry call” (Mulcare, 1990, p.186). Through the use
of Ada generic packages, any number of various architecture components (tasks) may be
instantiated. Their design methodology is described through the example design of a

simple bus with interacting components which consists of specification, then Pr-T net

23

modeling followed by Ada task/package coding. The results of the experiment concluded
that very little effort was required to model the system. Also, any components modeled can
become a portion of a growing reusable library of components. The author emphasizes that
“the Pr-T net served to focus the entire simulation development” (Mulcare, 1990, p.189).

B. OBJECT-ORIENTED DESIGN

There are many textbooks and papers emerging on the subject of object-oriented
design methodologies. Unfortunately, “To date, there is no design methodology that is
universally accepted by the object-oriented community” (de Paula & Nelson, 1991, p.203).
After reviewing various textbooks and papers, the design methodology proposed by de
Paula and Nelson was selected (because of its ease of use) for development of systems in
this thesis. The major steps of their design methodology is presented below (de Paula &
Nelson, 1991, pp. 204-205):

(1) Identification of the objects and classes.
(@) Initial definition of the objects and classes.
(b) Analysis of the object’s variables.
(c) Analysis of the object’s methods.

(2) Refinement of the objects and classes.
(a) Addition of necessary information.
(b) Elimination of redundant information.
(¢) Determination of class and instance variables.
(d) Identification of composite objects.

(3) Organization of the classes into a hierarchy.
(a) Analysis of the implementation language.
(b) Construction of the hierarchies.
(¢) Review of the classes’ variables/methods.
- The power of OOP lies in its natural ability to closely map the system to the actual
environment the programmer is trying to model. The first step (Identification of the objects
and classes) of the procedure identifies the objects and classes necessary to build the

desired model. Classes and objects can initially be derived from the problem domain, from

24

sources such as the the following: Tangible things (cars, houses), Roles (pilot,
programmer), Events (birthday, graduation), Interactions (meeting), People (manager,
bricklayer), Places (Areas set aside for people or things), Things (Physical objects that are
tangible), Organizations, Concepts, and Events (de Paula & Nelson, 1991).

The next step in the design process is “Refinement of the objects and classes™. This
step examines the methods and variables defined in the previous section. This step outlines
a procedure designed to simplify the classes in preparation of building a class hierarchy.

The final step (Organization of The Classes Into a Hierarchy) of the design process
organizes the classes defined in the previous steps into a class hierarchy. Class hierarchy
organization has some dependency on the particular language used to implement the
application.

The most important guideiine de Paula and Nelson give for construction of a
hierarchy is to "factor common methods as high as possible"” (de Paula & Nelson, 1991,
p-207). This allows the common attributes (methods and variables) of a class to be shared
by all the subclasses via inheritance. If two or more classes have attributes in common but
share no common superclass, an abstract class can be created as a superclass to allow these
common attributes to be inherited.

de Paula and Nelson point out that when reviewing the classes' variables and
methods it is necessary to look for classes that inherit unwanted variables and methods
from their superclasses (de Paula & Nelson, 1991, p.6). If the inheritance of unwanted
variables/methods cannot be removed, then some of the classes may have to be modified.

There is no standard format for representing class hierarchies. A simple method for
specifying a class definition in a language-independent manner is given by Nelson (Nelson,
1990, p.3) as presented in Figure 2.1. This format is used for representing classes in the

text of this thesis.

25

Class <class_name>

Superclasses: <superclass_1>, <superclass_2>, ...
Class Variables: <class_var_1>, <class_var_2>, ...
Instance Variables: <inst_var_1>, <inst_var_2>, ...
Methods: <method_name_1>, <method_name_2>, ...

Figure 2.1 Class Definition

C. CONCLUSIONS

This chapter introduced the various research in the area of computer architecture
simulation. This chapter also introduced the basic concepts of object-oriented design, and
described the methodology used in this work. It showed that several of the researchers are
interested in developing class libraries to model computer hardware objects. Most of the
researchers pointed out that the design of the class hierarchy is the crucial portion of the
design of any simulator. I feel that the research outlined in this chapter demonstrates a need
for a system with the following features: incorporation of reusable objects, an intuitive user
interface, and development using commercial software on a commercial microcomputer. It
should also be afordable for educaﬁon purposes.

26

ITI. SOLUTION

Chapter 1 introduced the concepts necessary to understand OOP, Prograph, and the
basic components of a computer microarchitecture. This chapter begins by discussing the
construction of a 'generic' microarchitecture class hierarchy and the objects necessary to
simulate a typical computer microarchitecture. This chapter also outlines the class hierarchy
and program construction for the implementation of two different microarchitecture

simulators.

A. DESIGNING A ‘GENERIC’ MICROARCHITECTURE CLASS
HIERARCHY

This thesis uses the object-oriented dcsign methodology presented in de Paula and
Nelson’s paper for the construction of class hierarchies (de Paula & Nelson, 1991).
Previously discussed in Chapter I, the following is an outline of their design methodology

(de Paula & Nelson, 1991, p.2):

1) Identification of the objects and classes.
(a) Initial definition of the objects and classes.
(b) Analysis of the object’s variables.
(c) Analysis of the object’s methods.
2) Refinement of the objects and classes.
(a) Addition of necessary information.
(b) Elimination of redundant information.
(¢) Determination of class and instance variables.
(d) Identification of composite objects.
3) Organization of the classes into a hierarchy.
(@) Analysis of the implementation language.
(b) Construction of the hierarchies.
(¢) Review of the classes’ variables/methods.

This methodology can be easily applied to tile problem of designing the objects and classes

of a computer microarchitecture.

27

1. Identification of the Objects and Classes
a. Initial definition of the objects and classes

In Chapter 1, the components of computer microarchitectures that are
common to most computers were introduted. These include: register, memory, ALU,
muxs MAR, MBR, .shifter, MIR, control store, and MPC. These components can be
thought of as the initial set of classes.

Next an initial definition of the variables and methods associated with each
of these classes must be specified. The following is the initial set of class definitions for
typical components found in a computer microarchitecture as specified above:

Class: ALU
Variables: none
Methods: and, or, not, math, zero?, positive?

Description: Represents a combinational circuit; thus, it
has no state. Methods are provided that perform logical
operations on a stream of input data.

Class: CONTROL STORE

Variables: varies

Methods: load, read

Description: Holds the entire microprogram. It must be
loaded with the microprogram prior to any simulation
execution.

Class: MAR

Variables: contents (string of bits)

Methods: mar, read, write

Description: Contains an address of a MEMORY
LOCATION within a MEMORY BANK. The method
mar accepts a control signal which determines if a value is to
be stored into the MAR.

Class: MBR

Variables: contents (string of bits)

Methods: mbr, read, write

Description: Models the data interface to the memory
bank. The method mbr accepts a control signal which
determines if the data input will be written w0 the MBR.

Class: MEMORY BANK
Variables: contents (array of
MEMORY LOCATIONs)

28

Methods: initialize, load, read, write

Description: A read or write to a MEMORY BANK
implies a read or write to a specific MEMORY
LOCATION contained in the MEMORY BANK. The
method load is used to load a user program or data into the
MEMORY BANK.

Class: MEMORY LOCATION

Variables: contents (string of bits)

Methods: initialize, read, write

Description: Used to describe the contents of a location
in a MEMORY BANK.

Class: MIR

Variables: contents (string of bits)

Methods: decode, read

Description: Contains the various control signals. The
method decode is used to parse the register contents into
required control fields.

Class: MPC

Variables: contents (string of bits)
Methods: set, increment, read, jump
Description: Models a microprogram counter.

Class: MUX

Variables: none

Methods: mux

Description: Models a combinational circuit. The output
is one selection from the many inputs.

Class: REGISTER

Variables: contents (string of bits)

Methods: initialize, read, write

Description: Defines how the data is represented in a
system, (i.c., how many bits represents a register/memory
location).

Class: REGISTER BANK

Variables: contents(array of REGISTERs)
Methods: initialize, load, read, write
Description: Similar to a MEMORY BANK.

Class: SHIFTER

Variables: none

Methods: shift_left, shift_right, no_shift
Description: Models a combinational circuit. Methods
u;\:; a binary input and perform a binary shift to the left or
right.

29

b. Analysis Of The Object’s Variables
This step looks at the variables associated with the objects defined in the
previous section. de Paula and Nelson recommend looking for the following (de Paula &

Nelson, 1991, p.3):

1) variables that are common to groups of objects (classes)

2) variables having the same value for all objects of a class

3) variables that can be calculated or derived from other variables
4) variables that can be decomposed into more elementary variables
5) variables defined for only a single class

Applying de Paula and Nelson’s guidelines to the previously described
classes, we determine the following: The classes, REGISTER, MAR, MBR, MIR, and
MPC, all share a common variable contents (guideline #1 above). However, for this
application the value of contents for MPC is an integer value. Thus, the variable
contents of the class MPC cannot be treated the same as the variable contents of the
classes REGISTER, MAR, MBR, and MIR. Yet, the MPC class still requires a read
method like the previously mentioned group of classes. The classes CONTROL
STORE, MEMORY BANK, and REGISTER BANK also share the variable name
contents but in this context contents refers to an array of the respective location types
(ie., MEMORY LOCATIONS for MEMORY BANK, etc.). Further observation
of the class descriptions show no variables to which guidelines #2, #3, #4, or #5 may be
applied.

30

¢. Analysis of the Object’s Methods
This step looks at the methods associated with the objects defined in the
previous section. The following points should be considered (de Paula & Nelson, 1991,
pp. 3-4):

1) Look for methods that are common to several classes.

2) Every concrete class should have, as a minimum, a set of methods to create,
delete, maintain, and display its instances.

3) In order to enforce encapsulation, it may also be necessary to define methods for
accessing and updating each variable.

The following is a summary of significant observations made by applying
the above design guidelines to each object’s methods: The classes REGISTER,
MEMORY LOCATION, MAR, MBR, MIR have the common methods read and
write. REGISTER and MEMORY LQCATION also share the method initialize.
The similar classes MEMORY BANK, and REGISTER BANK share the methods
initialize, load, read, and write. Also, the class CONTROL STORE shares the
methods load and read with MEMORY BANK and REGISTER BANK.

2. Refinement of the Objects and Classes
a. Addition of Necessary Information

The methods BINARY READ and BINARY WRITE were added to
the classes MEMORY BANK and REGISTER BANK. These classes require two
types of read and write methods. Due to programming concerns it is necessary to read
from and write to a storage/memory location using an integer or binary input. Therefore
the BIN-read and BIN-write methods were added to these classes to allow this
flexibility. The binary version of the read and write methods use the corresponding integer

31

version of these methods, by converting the binary address to its integer equivalent and
calling the integer version.

Closer examination of the object CONTROL STORE shows that there
is still a need to determine how the microprogram will be represented. Each step in a
microprogram has the same type of data, which determines what control signals will be
sent. The object CONTROL STORE should be made up of this data. This data format
can be clearly represented by introducing a new class, MICROINSTRUCTION, which
will define the various fields necessary to make up a microprogram microinstruction.
Thus, CONTROL STORE will consist of many instances of
MICROINSTRUCTION. This new class MICROINSTRUCTION also affects the
class MIR, in that the MIR contains a single MICROINSTRUCTION.

Examination of the classes REGISTER, MEMORY LOCATION,
MAR, MBR, and MIR shows that each of these classes has the instance variable
contents. If one considers the meaning of contents applied to each of these classes it
becomes apparent that the value of contents for an instance of REGISTER, MEMORY
LOCATION, MAR, MBR, and MIR consists of a single n-bit value (representing the
contents of a register), while the value of contents for an instance of CONTROL
STORE, MEMORY BANK, and REGISTER BANK will consist of an array of
many n-bit numbers (one for each storage location). Each one of these storage locations
can be described by an instance of that class related individual storage type. This results
with the instance variable contents containing an array of REGISTER, MEMORY
LOCATION, or MICROINSTRUCTION for its corresponding store type.

At this point, a design decision was made to represent the instance
variable contents as a list. This allows great flexibility as Prograph provides very
powerful list primitives. Representing contents as a list allows the application program to

32

represent storage locations with variable lengths. In the case of REGISTER, MAR,
MBR, MIR, and MPC, where contents represents a single binary number, contents
can be represented as a list of booleans, where each boolean represents a bit of the binary
number. In the case of CONTROL STORE, REGISTER BANK, and MEMORY
BANK, the value of contents represents many binary numbers so contents can be
represented as a list of instances of of the respective location type.
b. Elimination of Redundant Information
Redundant data is simply data which is not necessary to store directly as it
may always be derived from some other data. There is no redundancy in the data
maintained by the various classes defined so far.
¢. Determination of Class and Instance Variables
The variables in the classes discussed above have unique values for each
instance of each class. This means that these variables can be represented as instance
variables.
d. Identification of Composite Objects
There are no variables in the above mentioned classes that decompose into
more elementary variables. Thus, there are nc composite objects.
3. Organization of The Classes Into a Hierarchy
a. Analysis of the Implementation Language
The following questions should be considered (de Paula & Nelson, 1991,
P-2):

1) Does the system provide single, multiple, or selective inheritance?

2) If multiple inheritance is supported, what are the conflict resolution rules?
3) Can inherited methods be redefined (overridden) in the subclasses?

4) Can inherited variables be redefined (overridden) in the subclasses?

33

The implementation programs supporting this thesis are implemented in
Prograph, an object-oriented programmi'ng environment. Prograph supports single
inheritance only, which answers question one above and makes question two not
applicable. In answer to question three, Prograph allows inherited methods to be modified
or redefined, allowing the superclass to keep its original definition while allowing
modifications in the subclass method. Prograph also allows inherited variables to be
redefined which answers question four. Therefore, the object-oriented programs for this
thesis will have the following features: 1) single inheritance; 2) inherited methods can be
redefined in subclasses; and 3) inherited variables can also be redefined in subclasses.

b. Construction of the Hierarchies

In section A.1.b it was determined that REGISTER, MEMORY
LOCATION, MAR, MBR, MIR, and MPC have the same instance variable
contents. These classes also share several methods. The classes MAR, MBR, MIR,
and MPC represent specific applications of the more general class REGISTER which
allows these classes to be subclasses of the class REGISTER. Since the classes
REGISTER and MEMORY LOCATION share a common instance variable, and
several methods, but share no common superclass, it was decided to add the abstract class
STORAGE LOCATION. With the class STORAGE LOCATION defined, the
methods initialize, read and write can be moved up to the STORAGE LOCATION
class.

Further examination of the above class descriptions also reveals that the
classes CONTROL STORE, MEMORY BANK, and REGISTER BANK share a
common instance variable and many common methods, but no common superclass. Thus,

the abstract class STORAGE BANK was defined as a superclass for these classes. The

methods initialize, read write BIN-read, BIN-write, and load can then be moved
up to the STORAGE BANK class.

The remaining classes ALU, MICROINSTRUCTION, MUX, and
SHIFTER have no commonalities with any other class, and are therefore unrelated to
other classes by inheritance. Figure 3.1 presents the class hierarchy that results from the

above discussion.

MUX microinstruction

o o @

memory location register @@
b @@ ‘ eontnI‘store @% register bank

MAR MBR MIR mMpPC memory bank

Figure 3.1 'Generic' Class Hierarchy

We can now present a revised list of the 'generic’ computer
microarchitecture class definitions:
Class: ALU
Superclass: none

Variables: none
Methods: and, or, not, math, zero?, positive?

35

Class: CONTROL STORE
Superclass:
Variables: contents:
(array of MICROINSTRUCTIONS)

Methods: none
Class: MAR
Superclass: REGISTER
Variables: none
Methods: mar

Class: MBR

Superclass: REGISTER
Variables: none
Methods: mbr

Class: MEMORY BANK

Superclass: STORAGE LOCATION

Variables: contents: array of MEMORY LOCATIONs
Methods: none

Class: MEMORY LOCATION
Superclass: STORAGE LOCATION
Variables: none

Methods: none

Class: MICROINSTRUCTION
Superclass: none

Variables: instruction (string of bits)
Methods: none

Class: MIR

Superclass: REGISTER
Variables: none
Methods: decode

Class: MPC

Superclass: REGISTER
Variables: none

Methods: set, increment, jump
Class: MUX

Superclass:

Variables: none

Methods: mux

Class: REGISTER

Superclass: STORAGE LOCATION
Variables: none

Methods: none

36

Class: REGISTER BANK

Superclass: STORAGE BANK
Variables: contents: array of REGISTERs
Methods: none

Class: SHIFTER

Superclass: none

Variables: none

Methods: shift left, shift right, no shift

Class: STORAGE BANK
Superclass: none

Variables: contents: array of STORAGE
LOCATIONs

Methods: initialize, load, read, write, binary read,
binary write
Class: STORAGE LOCATION
Superclass: none
Variables: contents: string of bits
Methods: initialize, read, write
c¢. Review of the classes’ variables/methods
The constructed class hierarchy does not introduce any unnecessary
variables or methods in any class. We believe that it provides the basis for an accurate

model of the real world situation.

B. IMPLEMENTATION OF TANENBAUM'S MICROARCHITECTURE

With the class hierarchy of a general microarchitecture designed, it is now relatively
easy to implement the design for a specific microarchitecture. A simple microarchitecture
presented by Tanenbaum (Tanenbaum, 1984, pp. 126-149) can be modeled using the
classes presented in section A.3.b. A complete block diagram of his microarchitecture
design is reproduced in Figure 3.2 below:

37

pomeype

]]
eseespacegpe

Shifter

Figure 3.2 Tanenbaum’s Microarchitecture (Tanenbaum, 1984, p. 132)

1. Operation of the Tanenbaum Microarchitecture
This section is a summary of the design and operation of Tanenbaum’s example
microarchitecture; for more detail on this design refer to (Tanenbaum, 1984, pp. 126-149).
This microarchitecture design is divided into two main subsections; the datapath and the
control path. The left side of Figure 3.2 is the data path and the right side is the control
path. The data path side of this design consists of a 16 location register bank, AMUX,

38

ALU, SHIFTER, MAR, MBR, and memory. The bus width of the datapath is 16 bits, all
registers and memory locations are also 16 bits. Some of the register locations are for

general use and others are for specific use; a summary of the purpose of the various register
locations is summarized in Figure 3.3.

Location Purpose _ Symbol
00 Program Counter PC
01 Accumulator AC
02 Stack Pointer SP
03 Instruction Register IR
04 Temporary Instruction Register TIR
05 Zero 0
06 +1 1
07 -1 . -1
08 AMASK (address mask) OFFF (hex)
09 SMASK (stack mask) OOFF (hex)

10-15 General Purpose Registers

Figure 3.3 Microarchitecture Register Uses

Two of the registers can be read simultaneously and placed on the A and B
buses. The A bus signal is fed into the AMUX along with a signal from the MBR.
Depending on the control signal (0-A bus, 1-MBR) to the AMUX (a simple two input
multiplexer), one of the two inputs will be passed on to the left input of the ALU. The
value on the B bus is fed directly into the right input of the ALU. The value on the B bus is
also routed to the input of the MAR, if the control signal to the MAR is TRUE the value of
the B bus will be read into the MAR.

Two control signals, Fg and Fj, cause the ALU to perform one of the following
operations: A+B, A AND B, A, ~A (where A and B represent the data on the respective
buses). The ALU generates one data output and two control outputs. The data output

feeds to the input of the shifter. The two control output signals are Z (true if data result is

39

zero) and N (true if the data result is negative). These two signals feed into the micro
sequencing logic.

The shifter shifts the input data one bit to the left or right, or it can pass the data
through to the C bus without alteration. The shifter has two control signals as input, So,
and S1. The output of the shifter is placed on the C bus and can be fed to the register bank
and the MBR. The value of the C bus will be loaded into the desired location in the register
bank if the ENC control is TRUE. The value of the C bus will be loaded into the MBR if
the MBR signal is also TRUE.

The MAR and MBR in this design can be considered to be the interface between
the memory and the CPU. When the MBR receives a READ signal of TRUE it will read
the contents of the memory location pointed to by the MAR and place that location’s value
into the MBR. When the MBR receives a WRITE signal of TRUE it will place the contents
of the MBR into the memory location pointed to by the value of the MAR. As discussed in
the introduction, the access speed of memory is usually slower than the access speed of the
CPU'’s registers. In this design it takes two complete machine cycles to read from or write
to memory. This means that register access is twice as fast as memory access.

This architecture uses a microcoded program to control its components. The
microprogram is stored in the Control Store. At the beginning of each clock cycle, the
contents of a location (pointed to by the MPC) of the control store is loaded into the MIR.
The MIR is divided into various fields, each field holding a control signal for a specific
component. These control signals are routed to the various hardware components in the
microarchitecture. As soon as the desired microinstruction is loaded into the MIR, the
signals are routed to these components for the entire clock cycle. The status of the
microprogram is maintained by the MPC. After the MPC is read its value is incremented

and the result is presented to the Mmux. Two of the fields of the microinstruction are the

40

ADDR and the COND fields. The value of the ADDR field is presented to the input of the
Mmux. The Mmux chooses between the ADDR and increment inputs for an output. The
selection depends on the output of the micro sequencing logic (based on the outputs of N
and Z) and the value of the COND read from the MIR. The COND code is summarized in
Figure 3.4 (Tanenbaum, 1984, p.134):

0 = Do not jump; next microinstruction is taken from MPC + 1
1=Jump to ADDRifN=1

2=Jumpto ADDRifZ=1

3 = Jump to ADDR unconditionally

Figure 3.4 COND Code Definitions

This result determines if the next microinstruction executed will be the next
instruction in the control program’s sequence or a jump to some other portion in the
microprogram.

Each clock cycle is divided up into four subcycles. The following events occur
during these subcycles (Tanenbaum, 1984, p.131):

1. Load the next microinstruction into the MIR, send control
signals to various components.

2. Gate registers onto the A and B buses, increment the MPC.

3. Allow ALU and shifter time to produce stable outputs and
load MAR if required.

4. Store the C bus into the desired register location if desired and
load the MBR if required.

2. Design of The Class Hierarchy
The design of a class hierarchy to implement a simulation program for
Tanenbaum’s microarchitecture begins with the general microarchitecture classes outlined
in section A.3.b. and building from them into a full Macintosh application. Appendix C

contains the complete Prograph source code listing for the simulation of Tanenbaum’s

41

microarchitecture. A design decision was made to allow the microarchitecture to simulate
memories and registers with a variable bit width. This allows for quicker test runs and also
allows the simulator to model memories of various sizes.
a. Review and Modification of the General Class Hierarchy

No modifications (from section A.3.b) are required to the following
classes: ALU, MAR, MBR, MIR, MUX, MEMORY LOCATION,
MICROINSTRUCTION, REGISTER, REGISTER BANK, SHIFTER,
STORAGE BANK, and STORAGE LOCATION. The following classes were
modified (The revised ‘generic’ class descriptions are located in Appendix A):

Class: CONTROL STORE

modification: Added a load method that invokes the
inherited load method from storage bank to assign
appropriate variable values.

Class: MEMORY BANK

modification: 1) Added a load method that invokes the
inherited load method from storage bank to assign
appropriate variable values. 2) Overshadowed inherited
methods read and write (from STORAGE BANK) to
support read/write using MAR/MBR interaction with the
memory.

Class: REGISTER BANK

modification: Added a load method that invokes the
inherited load method from storage bank to assign
appropriate variable values.

Class: MPC

modification: 1) Added instance variables cycles &
counter for simulation support. 2) Added methods set
cycles and get counter. Set cycles is used to set the cycle
counter to zero and store the desired number of clock cycles
in an instance of MPC. The method get counter, passes the
counter value of an instance of MPC to its calling method.

Class: MICRO SEQUENCER
Superclass: none

Variables: none

Methods: gencerate signal

42

Description: Simulates the micro sequencer component
of Tanenbaum’s architectue. The method generate signal
sends a signal to the mux for controlling logic and
addressing of the MPC.

The source code listing in Appendix C also includes several other classes
that have not been discussed thus far. These classes include: System, Application,
Menu, Menu Item, Window, sim and Time. The time class is supplied in a class
library provided by TGS systems (The TGS systems bulletin board). This class is used to
convert system time to strings for I/O purposes. The ‘About Micro Simulator’ menu item
displays a dialog box that gives program credits and the date and time. The sim classisa
class added to the hierarchy (inheriting variables/methods from the class Window) which
contains methods that implement input/output for simulation purposes. The other classes
are all System classes supplied with the Prograph interpreter/compiler (TGS Systems,
1990, p.109). These classes must be included with any application; they include the
attributes and methods necessary to handle menus, windows, and event control for stand

alone applications.

3. Design of the Micro Simulator
a. The user interface
The Micro Simulator was designed to be a stand alone Macintosh
application. This means that the user interface consists of a menu bar for controlling the
program and windows and dialog boxes for facilitating input/output. The Menu Bar is
shown in Figure 3.5.

43

[File Edit Controls

Load Memory Define Memory

Load Registers Riter Register

Load Control Store Cycle

Quit Single Instruction
Multiple Instructions
Set MPC
Run # of Cycles

Figure 3.5 Micro Simulator’s Menu Bar

Referring to Figure 3.5, the first menu item under the File menu is Load
Memory. This selection is used to load a text file that represents the initial memory map
into the memory bank. A sample program that can be loaded into memory using the Load
Memory selection is presented in Figure 3.6.

] Opcode Macro Instr Comments

00-0111000000000100 LOCO 4 Loads the constant 4 into the AC
01-1111010000000000 PUSH Push the contents of the AC onto the stack
02-0011000000001100 SUBD MEM[12] Subtract memory loc #12 contents from AC
03-0101000000000101 JZER 5§ if AC = 0 then PC := 0
04-0110000000000001 JUMP 1 Set PC := 1
05-0110000000000101 JUMP S5 Stay running idle

06-0000000000000000
07-0000000000000000
08-0000000000000000
09-0000000000000000
10-0000000000000000
11-0000000000000000
12-0000000000000001 Constant 1

Figure 3.6 Sample Object Program Text Format

This is a simple program that loads the constant 4 into the accumulator and
then pushes copies of it five times on top of the stack.The numbers preceding the dash are
the desired memory location. The numbers following the dash are the instruction opcodes
or memory values. These are the actual values loaded into the memory. Any characters

following the opcodes are considered comments and are not loaded. The first column
following the opcode is a macro description of the preceding opcode. The column
following the macro description contains general comments. The text file has to be as long
as the program requires, if the program contains 13 instructions then the text file must
contain 13 lines. Notice that locations six through 11 have no values; that is because they
are used as place holders for an actual constant value at location 12. If these place holders
were not used the constant that should have been loaded at location twelve would instead be
loaded at location 6.

Referring once again to the File menu of Figure 3.5, the Load
Registers selection operates exactly the same as the Load Memory selection, except that
the data is directed to the Register bank. The Load Control Store selection similarly
loads a text fiie into the Control Store. The Quit selection is used to quit the Micro
Simulator application.

The Edit menu selection of Figure 3.3 is a standard Macintosh menu bar
selection and must be present for all Macintosh applications. For more information on this
selection, refer to Inside Macintosh Volume I (Apple Computer, 1985, p.58).

The Controls menu of Figure 3.4 is the menu which implements the
features of the Micro Simulator. The Define Memory selection is used to initialize the
simulator’s register and memory configuration. This selection causes a dialog box to be
displayed as shown in Figure 3.7. The first three entries are self explanatory. They
determine the width, in bits, of the memory/registers and the respective number of locations
for each. MAR size determines the desired bit width of the MAR. This allows the
simulation to limit the address space allowed for the memory interface.

45

Define Registers & Memories
Register Width: 16
Number of Registers: 12
Number of Memories: 20
MAR Size: 12

(—.m

Figure 3.7 The Define Memory Dialog Box

Referring once again to the Controls menu of Figure 3.4, the Alter
Register command displays a dialog box which allows the user to input a desired register
location (by number) and the new value to load into that register from the keyboard.
Cycle causes the simulator to execute one microinstruction. Single Instruction causes
the simulator to execute one macro instruction. The Multiple Instructions command
displays a simple dialog box that requests the desired number of macro instructions to be
executed; this causes the simulator to execute that number of macroinstructions. The Set
MPC command displays a dialog box which allows the user to set the MPC. The Run #
of Cycles command displays a dialog box asking for the desired number of clock cycles
to be executed, then executes the desired number of clock cycles and stops.

Status of the simulator is displayed in a window (Micro Simulator) which
includes a diagram of the data side of the microarchitecture along with the values of the
various components. A reduced copy of the Micro Simulator window is presented in

Figure 3.8. Any values displayed are for the last microinstruction executed.

Micrp Simulatay

99--00UUD0DIUVUTDIU0UD
9%--00U00UDUDUOBUDUD
168--000000D000000DECD
11--000000UITVLUDODUD
12--000000000C0DODA1T
13--004¢000DC000D0DCD
14--000000000C0DODAD
15--0000000C0C0DODAD
16--00000000000D0DCD

MPC 00—00D000000B0D0001
Coundber Last Next fop aln@eweDana@ras ng
02--0000000000000000 [iioq] | o]
u] 3 ©3--U11100000D0UBUIC0
04—1000000000100000 [8Y eormrh A ":" B buz
UH“UUUWU“D“DU}W [1999191944 [TEX] 4100
Hdlllom Ualues - ENC
bpa--a111000000A0DOIAD O man
0i--1111013000000000
22--g011003000001100
D3--0101003000000101
D4--01 1000000000000 1
05--01 1D003000000101
06-—-0U00INIonENan0ng
07--U0UCDUJUOUDIODUD

Figure 3.8 The Micro Simulator Window

The various check boxes (ENC, MBR, MAR, etc.) represent control

signals sent from the last microinstruction. An activated box (‘x’ inscribed in the box)

indicates that the corresponding control signal is true, and an unactivated box indicates a

control signal of false.

The rectangles containing text display the contents of the respective object.

The boxes labeled A bus and B bus indicate the values of the respective buses. The smaller

boxes above those values indicate what register locations (by binary number) were loaded

on the respective buses.

There are also text boxes to indicate the contents of: MAR, MBR,

and C bus storage location. The text boxes associated with the ALU, AMUX, and Shifter

indicate the outputs of

those devices. The boxes under MPC Last and Next indicate the

number of the previous microinstruction executed and the number of the next

47

microinstruction to execute. The Counter text box indicates how many clock cycles since
the last time MPC was set. The text box below the Counter box presents the mnemonic of
the last complete macro instruction executed. Two scroll boxes are used to display the
contents of the memory and register banks.
b. Micro Simulator Program Structure

The dataflow nature of Prograph allows for the Micro Simulator program
structure to be relatively simple. As stated in section B.1, each clock cycle is divided into
four subcycles. A universal method Cycle is a method that contains four local operators
that each contain their respective subcycle. Figure 3.9 presents the logical dataflow
modeled by the Prograph source code. This code simply gets the Micro Simulator window
and then executes each subcycle sequentially. The dataflow implementation automatically
forces each subcycle (like a precedence graph) to run to completion before the next
subcycle can execute. Several universal methods are provided to drive the Cycle method
for the following: one complete cycle, several cycles, and to completion of a single macro

instruction.

48

ﬂcle' 1:1

QULLLLLLLLLL L Ll vl s

Micro Simula...
Req Window
%Vindov IG tindngz
\ Window
I 00000050500000
7775 eyete 277777Z4)

V777775 >y 377724

72222 200 72)

(3

Kal [

2]

Figure 3.9 Cycle Universal Method

Program state in the Micro Simulator is maintained by using Prograph

stages of subcycle execution.

49

persistents. These persistents are presented in Figure 3.10. These persistents are initially
loaded during the execution of the initial universal method, and get updated during various

(=2

@

@ Persistents
control store register store register

Register Scroll Memory Scroll memory store

| o

)]

Figure 3.10 Micro Simulator’s Persistents

C. IMPLEMENTATION OF A SIMPLE COMPUTER (ASC)

Tanenbaum’s mlcroan:hchture was easily implemented with few modifications using
the ‘generic’ class design presented in section A.3.b of this chapter. The best way to
fully test this class design was to implement an architecture of a significantly different
design. This section introduces another architecture called “A Simple Computer” (ASC)
which is presented by Shiva (Shiva, 1991, pp. 220-273). A brief description of the design
and operation of the ASC and the implementation of its simulator using the 'generic'
classes refined in section B (revised description of ‘generic’ classes are located in
Appendix A) is now presented.

1 Operation of the ASC Microarchitecture

A simplified block diagram of the ASC is presented in Figure 3.11. Like
Tanenbaum’s microarchitecture, the ASC has a datapath side and a control path side. The

datapath side consists of three buses, various registers, memory bank (including

50

MAR/MBR), index register bank, constant registers (1 and -1 hard wired) and alu. All
components on the datapath side of the ASC are sixteen bits wide, and numbers are
represented using two’s complement arithmetic. BUS1 and BUS2 direct data from the
various registers into the ALU. BUS3 directs data from the output of the ALU back to the

various registers.
) BUS1 BUS2
—{ } - Index
| MAR | Registers
1
uE =
3
Memory
— e 1
— -
1]
——[acc_} -
) ADD
e COMP
b SHR
-1 A le—s
. pg——=TRA1
r TRA2

BUS3

Figure 3.11 ASC Microarchitecture Block Diagram (Shiva, 1991, p.229)

Each register (other than the Index Registers) is a unique single entity. This
means that all the appropriate control signals are routed to each of these devices separately
(write to BUS1/2, read from BUS3). It should also be noted that not all registers can write
to both BUS1 and BUS2. The design of the microprogram ensures that only one register

51

at a time writes to each bus. BUS1 and BUS2 also have the sixteen bit constant values ‘1°,
while BUS1 also has the sixteen bit constant value ‘-1°. These ‘values’ act like registers
with read only capability.

The ALU receives six signals from the microcontrol unit and receives sixteen bit
data from BUS1 and BUS2. Only one control signal can be applied at a time. These
control signals control the following functionality to the ALU:

1) ADD, add the values on BUS1 and BUS2 and place the results on BUS3.
2) COMP, take the two’s complement of BUS1 and output the results to BUS3.

3) SHR, shift the value of BUS1 one bit to the right, with the high order bit
replacing the low order bit, and output the results to BUS3.

4) SHL, shift the value of bus1 one bit to the left, replacing the low order bit with
zero, and output the results to BUS3.

5) TRA1, directs the value of BUS1 to BUS3.
6) TRA2, directs the value of BUS2 to BUS3.

Notice that in the ASC design the shifter functionality is included within the
ALU. The ALU also updates the value of the PSR (Processor Status Register). The PSR
consists of 4 bits, C, N, Z, and O; these values stand for carry, negative, zero, and
overflow respectfully. The ALU updates the PSR only when the accumulator register is
written to. The overflow bit is set when the sum operation results in a number larger than
215 -1. The negative bit is set when the result of an ALU operation is negative. The zero
bit is sctwhenmcremﬂtofanALUopemtionis zero. The carry bit is set when a carry out
from the high order bit results from an addition operation.

The MAR and MBR registers are used as an interface between the memory and
the CPU. When the MBR receives a READ signal it reads the contents of the memory
pointed to by the MAR and place that location’s value into the MBR. When the MBR
receives a WRITE signal it will place the contents of the MBR in the location of memory

52

pointed to by the value of the MAR. In this design it takes two complete machine cycles to
read from or write to memory (i.e., register access is twice as fast as memory access).

The ASC design supports four types of addressing; direct, indexed, indirect,
and indexed-indirect addressing (preindexed-indirect). The addressing modes are directly
controlled by fields of the ASC’s macroinstruction. The ASC’s microarchitecture design
relies specifically on this macroinstruction format. As mentioned above, all instructions
used by ASC are sixteen bits wide. The ASC’s instruction format is divided up into

various fields as presented in Figure 3.12.

Opcode
Extension Bit Indirect Flag Index Flag
Opcode Address
15 14 13 12 11 10 9 8 7 0

Figure 3.12 ASC Instruction Format

This implementation of the ASC supports 16 macroinstructions, thus four bits
in the macroinstruction is needed to describe the opcode (bits 12-15). Bit 11, the opcode
extension bit, can be used to increase the number of opcodes to 32. Bit 10, the indirect
flag, is set when indirect addressing is used. The two bit index flag (bits 8 & 9) has two
purposes: when the flag is set to ‘00 ¢, the index flag indicates that indexed addressing
mode is not in use; when the flag is set to the values ‘01’ through ‘11°, it indicates that
indexed addressing is in use with the corresponding index register. The eight bit address
field (bits 0-7) is used for direct addressing, or combined with the other addressing modes.
For a complete description of the actual instruction set refer to (Shiva, 1991, p.193).

The control side of the ASC mif:roarchitecture consists of a Microcontrol unit,

MPC, MIR, Decoder, and a Control Store. This configuration is presented in Figure 3.13.

53

The MPC points to the next line of the microprogram to fetch (from the control store). A
microinstruction is 21 bits wide and can be in one of two different formats. The formats
are distinguished by the high order bit. If the high order bit is zero, it is a type zero
microinstruction. If the high order bit is 1 the instruction is a type one instruction. A type
zero instruction actively sends control signals to the various components of the
microarchitecture; each bit represents a co;m-ol signal. A type one microinstruction uses
input status signals to alter program flow of the microprogram. Therefore, a type one
microinstruction will cause the MPC to be set to some address other than the next
instruction in the control store. For a more detailed description of the microinstruction

formats and control signal outputs see (Shiva, 1991, pp. 267-268).

Status Signals Control Store
From: .' Microcontrol unit
PSR contents — (MCU)
IR contents —

index Register contents

MR <—-;I
(1

Decoder

i

Control Signals

Figure 3.13 Block Diagram of ASC Microcontrol Hardware

The Microcontrol unit receives status signals from the PSR, instruction register

(IR) and index registers. Based on the status signals and the type of the microinstruction,

54

the microcontrol unit will either load a new address into the MPC and load a new
microinstruction into the MIR, or it will take the present contents of the MIR and decode it
into control signals, increment the MPC, and repeat the process.
2. Design of The Class Hierarchy
The design of a class hierarchy to implement a simulation program for the ASC
microarchitecture also begins with the 'generic' microarchitecture classes presented in
Appendix A and building from them into a full Macintosh application. Appendix D
contains the Prograph source code listing for the simulation of the ASC microarchitecture.
a. Review and Modification of the General Class Hierarchy
This section reviews each class defined in Appendix A ('generic’ classes)
and describes the modifications necessary to implement these classes in the ASC design.
No modifications (from Appendix A) were required to the following
classes: CONTROL STORE, MAR, MBR, MPC, MEMORY LOCATION,
MEMORY BANK, REGISTER, REGISTER BANK, SHIFTER, STORAGE
BANK, and STORAGE LOCATION. The classes MUX and
MICROINSTRUCTION were not used. MUX was not used because the ASC design
contains no mux’s. The MICROINSTRUCTION class was not used because simple
instances of register were used to hold microinstructions. The ALU class includes
message passing to the shifter class in its math method. This enables shifter functionality
in the ALU in accordance with the ASC microarchitecture design. The following classes
were modified or added:
Class: ALU (modified)
modification:
1) Added the method overflow to determine if the output
of the ALU is causing an overflow condition.
2) Modified the method math to account for the ASC

specific functionality (actual operations) including the
updating of the PSR.

35

Class: MICRO CONTROL (added)
Superclass: none

Variables: none

Methods: mcu, read control store, Busl Data,
Bus2 Data, Bus3 Signals,
ALU Signals, Memory Signals.

Description: Contains methods to read micro-
instructions, generate control signals, and branch

microprogram control flow.

Class: MIR (modified)
modification: Added the methods decode 0, and decode 1
to decode the type zero and one micCroinstructions.

Class: INDEX BANK (added)

Superclass: STORAGE BANK

Variables: none

Methods: zero index

Description: Describes the data structure and methods
necessary for implementing an index bank for the ASC. The
zero index method generates a signal to determine if the
contents of an index register is zero.

Class: IR (added)

Superclass: REGISTER

Variables: none

Methods:

Description: The parse method separates the contents of
the instruction register into the various fields.

Class: PSR (added)

Superclass: REGISTER

Variables: none

Methods: decode

Description: Contains an instance variable that maintains
the value of a status register. Includes a method to decode
its contents for use in the microcontrol unit.

The source code listing in Appendix D also includes the various system classes
supplied by prograph and the class sim, as discussed in Section B.2.a.

56

3. Design of the ASC Simulator
a. The user interface

The ASC simulator, like the Tanenbaum simulator, was implemented
using Prograph on the Macintosh microcomputer. This section discusses the general
design of the ASC simulator and its user interface.

Figure 3.14 presents the menu bar for the ASC simulator. The ASC
simulator application menu bar and most of its controls have the same functionality as the
Tanenbaum micro simulator menu bar. Since the ASC does not use a general purpose
register bank, the Alter Register menu selection under the Controls menu was
removed. This menu selection allows the user to enter a value from the keyboard by
entering the register number and its new value. The Register menu was added to the

menu bar to enable keyboard entry changes for the program counter (Update PC).

[File dit__ Controls Register
Load Memory Define Memory Update PC
Load Registers Cycle
Load Control Store Single Instruction
Quit | Multiple Instructions

Set MPC

Run # of Cycles

Figure 3.14 ASC Simulator’s Menu Bar

The File menu is exactly the same as the Tanenbaum Micro Simulator,
and its selections provide the same functionality. The required data format for the input text
files is also the same. The Edit menu selection contains the standard Macintosh editing
features.

The Define Memory function was changed because the ASC simulator

was designed to operate with a fixed memory/register bus width of 16 bits. Also, since the

57

ASC uses individual registers, there is no need to specify the required number of registers
in the register bank. This selection still initializes the memory bank to the desired number
of memories. This resulted in a Define Memory Dialog Box with one input, ‘Enter
Desired Number of Memories:’. This dialog box is presented in Figure 3.15. All other

menu selections have the same functionality as the Tanenbaum micro simulator.

Define Memories

Enter Desired Number of Memaories:

20

Figure 3.15 The Define Memory Dialog Box (ASC)

Status of the simulator is displayed in a Window (Micro Simulator) which
includes a diagram of the data side of the microarchitecture along with the values of the
various components. A reduced copy of this window is presented in Figure 3.16. The
values in the various boxes indicate the value of the respective components after each
microinstruction is executed. Several new items were added: MIR, Index Bank, CNZV
(PSR), and the constant values (1 and -1). The CNZV output gives the status of the PSR,
while the constant values are placed on the associated input buses by the microcontrol unit.

The MIR box gives the bit string of the last microinstruction executed.

58

Micro Simulatar

Ld ™ 0000000010

[to--caniecacobnoiaon
Di--110UDCUIDDOVOGY I 1
02--00100U0IVDUDIOID
P3--11110U01000DUDI0
D4--0101D00CODODAOA 1
D35--00D0DA0U0DODANCO
06--00003004030D 0000
D7--00D0DA0Q0DODA1G1
DE--Q0D0DA0QODODI L1 ¢
09--0000DC00A0D0DIOC1

I Read
Ol write

1 =il
Ll

MERA
t 1000010000011

0B3DGON T 11
L D0 GoOOOGON00111] [pong

ﬂll Egmmonmmnﬁl

MPLC
Last Npmt

EJET]

DU--00U000UDN DUDDUDUD L)

LY R gy g |

D2--000000DGDGOCODED I
03--000000DODOODODED [T

DO0G0AN0A00N0 10

Figure 3.16 The ASC Simulator Window

b. ASC Simulator Program Structure

The ASC simulator’s main program uses the universal method Cycle (as

in the Tanenbaum simulator), but the ASC’s design does not use subcycles. The Cycle

universal method is the main program and brings together all the various classes’ methods

to work as a complete simulator. The other universal methods used in the Tanenbaum

simulator were also integrated seamlessly in the ASC simulator (generic conversions

between bit strings and boolean strings, etc). Program state is maintained by using

Prograph persistents (see Appendix D).

59

D. COMPARISON OF THE TWO SIMULATORS

Both architectures possess many similarities. Their designs have a classic layout that
consists of a data path and a control path. The data path side consists of some type of
register configuration (including a program counter, instruction register, and accumulator),
memory with a MBR/MAR interface, buses, and a two bus input ALU. The data path side
for these architectures is 16 bits wide. On the control side, both architectures have a
control store, MPC, and MIR. Both architectures use a microprogram to control their
various components for the execution of macroinstructions. Since they both use a
microprogram, their macro level instruction set can be expanded or changed by altering
their respective microprograms. With respect to the implementation of the simulators, both
designs use the same format for textfile input of the macroprogram to the memory. Both
simulators allow altering the microprogram by loading the control store with a textfile
representing the microprogram.

Although the Tanenbaum and ASC designs are very similiar, there are also some
differences in their designs. One major difference between the Tanenbaum design and the
ASC design is the layout of the registers. With the ASC, each register (other than the
Index Registers) is a unique single entity. This means that all the appropriate control
signals are routed to each of these devices separately (write to BUS1/2, read from BUS3).
The Tanenbaum design uses a bank of registers which allows two registers at a time to
send their values to the A and B Buses and one register to receive the contents of the C
Bus. The registers are selected by sending the appropriate register numbers to the register
bank. Thus, the ASC design requires many more control signals to manipulate the
registers. In the ASC design not all registers can write to both BUS1 and BUS2, while the
Tanenbaum design allows the same operations for all registers. The design of the

microprogram ensures that only one register at a time writes to each bus. The

60

implementation of ASC requires individually initializing each of the separate registers,
where the Tanenbaum simulator simply inializes the entire register bank with one operation.
In the ASC design, BUS1 and BUS2 also have the sixteen bit constant values ‘1°, while
bus 1 also has the sixteen bit constant value.‘-1°. These ‘values’ act like registers with read
only capability. The ASC design uses an index register bank to support indexed
addressing. The functionality of the index bank is similar to the Tanenbaum register bank.
This required the addition of the index bank class in the ASC simulator. This class was
added to support the additional functions of indexed addressing.

While both designs support direct addressing, other addressing modes are not shared
by the two microarchitectures. The Tanenbaum design supports immediate addressing and
includes a stack, along with stack operations such as push and pop. Immediate addressing
is supported completely through the microprogram. The implementation of the stack does
not require any special simulator features except a register reserved for a stack pointer
(which is a general register in the Tanenbaum design) and the appropriate microprogram
support. .

The ASC design supports direct, indirect, indexed addressing, and indexed-indirect
adressing. Direct addressing is similiar to the Tanenbaum design. Indirect, and indexed
addressing is supported by adding the method parse to the new class IR (Instruction
Register). The parse method decodes special fields that direct the Microcontrol unit to use
indirect, direct, or indexed-indirect addressing.

The microinstruction format of the two designs differs of course, but how the formats
are used is also different. In the Tanenbaum design, all microinstructions are of the same
type; a microinstruction is decoded and the various control signals are sent to all the
components. Part of the microinstruction field contains a conditional that, based on the

microsequencer output, will cause the Mmux to branch the microprogram or go to the next

61

microinstruction. In the ASC design, there are two types of microinstructions: a type zero
microinstruction, which sends control signals to the various components; and a type one
microinstruction, which controls branching of the microprogram. This difference in the
microinstruction format required various additions/alterations to the ‘generic’ classes. The
MIR class was modified to support the decoding of the two types of microinstructions.
The class MICRO CONTROL was added (in lieu of the MICRO SEQUENCER class
which was removed from the Tannenbaum simulator) to support the microcontroler
functionality specific to the ASC design. “This type of change would be required when
switching between any different architectures. In the ASC design the Micro Control unit
makes all deciscions involving branching; this eliminates the need for a Mmux as found in
the Tanenbaum design.

The execution of macroinstructions also differs between the two designs. The
Tanenbaum design loads the macroinstruction into an instruction register. As the
microprogram progresses, the macroinstruction is shifted to the left. The microprogram
branches to different locations based on the value of the most significant bit of the
macroinstruction. This means that, depending on the size of the opcode of the
macroinstruction, the microprogram can branch for up to 8 cycles to parse the
macroinstruction (the largest opcode is 8 bits). The decoding of an ASC macroinstruction
is a much shorter process. The macroinstruction is fetched, and placed in the instruction
register. The opcode of the macroinstruction matches the address of the microcode
required to execute the macroinstruction. This results in a slightly larger microprogam, but
fewer cycles are needed for each macroinstruction. These differences are accounted for in
the respective simulators by microcode and their respective objects (MICRO

SEQUENCER in Tanenbaum, and MICRO CONTROLLER in ASC).

62

The Tanenbaum design sends three signals to the micro sequencer: N (ALU output is
negative); Z (ALU output is zero); and COND (microprogram branching conditions based
on N and Z). The ASC design is slightly more complicated. It maintains a PSR
(Processor Status Register) that has several bits (C, N, Z, and O as discussed in section
C.1) representing the status of the number in the accumulator. There are more inputs to the
micro controller, PSR, IR, and Index Registers contents. These differences are supported
in the respective classes MICRO SEQUENCER and MICRO CONTROLLER.
Also, the classes, IR, and PSR with associated methods were added to the class
hierarchy for the ASC simulator.

The two designs have different ALU functionality in that they have different inputs
and operations. The Tanenbaum design has two different components, an ALU and a
Shifter. The ASC combines the functionality of these two components into the ALU. The
method overflow was added to the class ALU and the math method was altered to
provide the required functionality for the ASC design. In the ASC design, messages (from
within the ALU methods) are sent to the shifter object to give the effect of the shifter
residing inside the ALU.

Both designs have several small variations in some of the objects as discussed above.
The various objects are brought together to form a complete simulator via the main
program. Since these simulators differ, the main programs differ. The main programs for
both simulators are called ‘cycle’ and are implemented as universal methods (in Prograph).
The user interfaces differ in appearance (because the buses and components differ), but the
approach for the construction of the user interfaces are exactly the same. Their menu bars
and dialog boxes are almost the same; this allowed a great deal of code to be reused. These
two simulators were designed by first considering the Tanenbaum design, making ‘generic’

classes, and then producing the Tanenbaum simulator. The ASC simulator was designed

63

by taking the ‘generic’ classes previously derived and applying the changes necessary to
give ASC functionality. This process could have easily been reversed with very little
inpact on the final result.

E. SUMMARY

A 'generic’ class hierarchy was designed for the application of simulating a general
purpose computer microarchitecture. A simple computer microarchitecture (Tanenbam’s)
was introduced in which a simulator was designed and built using this 'generic’ class
hierarchy. Few modifications/additions were required in building the Tanenbaum simulator
from the ‘generic’ classes. To further test the ‘generic’ class design, a second computer
microarchitecture was introduced (Shiva’s) in which a simulator was designed and built
using the refined 'generic’ class hierarchy arrived at when designing the Tanenbaum
simulator. Once again it was discovered that few modifications were required in the refined

class hierarchy when extending its use in another simulator.

IV. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE RESEARCH

A. SUMMARY

Chapter I developed the need for simulation of computer architectures at various
levels. It introduced the notioh that architecture simulation could be more easily
implemented using object-oriented design and programming. The chapter further
developed object-oriented concepts by giving basic definitions and terminology. Basic
microarchitecture components and operation were then described using an example
microarchitecture. Finally, Prograph, an object-oriented, visual, data-flow language was
introduced, along with a basic description of its syntax and use applied to object-oriented
programming.

Research areas related to this thesis were discussed in Chapter II. These areas
included: architecture simulation for educational purposes, class hierarchy design for
simulation of multimicrocomputers, object-oriented approach to VLSI routing, object-
oriented approach to interactive user interface for microprogram simulators, and work
being done using object-based languages such as Ada. Several of these papers pointed out
that the design of the class hierarchy is a crucial portion of the design of any simulator.
There is a definite interest in the areas of classroom instructional simulators using object-
oriented programming languages with reusable software components and an easy to use
user interface. As of yet, however, there is no work encapsulating all of these concepts
simultaneously. This provided the motivation for this research.

Chapter III showed how an existing object-oriented design methodology was used in

designing a ‘generic’ class hierarchy to implement the components of the basic computer

65

microarchitecture introduced in Chapter I. Tanenbaum’s microarchitecture design and
operation was then introduced. The ‘generic’ classes were used in the development of a
microarchitecture simulator using Tanenbaum’s microarchitecture. It was found that very
little modification to the existing ‘generic’ class hierarchy was required in implementing the
Tanenbaum simulator. The design and operation of Shiva’s ASC microarchitecture was
also introduced. A simulator for this microarchitecture was implemented to further test the
usefulness of the ‘generic’ microarchitecture class hierarchy. Once again, only a few
modifications to the ‘generic’ class hierarchy were required to implement this simulator.
The design and implementation of the two simulators, including the user interfaces, were

élso discussed.

B. CONCLUSIONS

Object-oriented programming provides a natural environment for modeling and
simulation problems. This is because the implementation details are hidden, allowing
objects to reflect the real-world environment. A careful class hierarchy design is,
however, essential to the development of any object-oriented program.

‘Generic’ classes can be created to simulate the various objects found as components
in most computer microarchitectures. Careful design of these component objects allows the
reuse of the code for many different simulators. This was demonstrated through the
development of simulators for two different microarchitectures. In implementing the two
simulators, it was still necessary to write a ‘main’ program that puts the various ‘generic’
objects together to form a complete simulator.

It was also found that components like ALU’s, which are peculiar to each
architecture, require complete remodeling; there was very little code reusability. Parts of an
ALU model can be reused, like adders, but the control signals are normally different

enough to warrant a complete redesign.

Each simulator required slightly different user interfaces; however, these user
interfaces had almost identical menus and functionality. They only had a different depiction
of the buswork and components. '

The microarchitecture simulators were implemented in Prograph, a visual, object-
oriented, data flow language operating on the Macintosh. It was found that although there
was an initial learning curve (to adapt to the unaccustomed nature of the pictorial syntax),
Prograph made the implementation of the class hierarchy for the simulators relatively easy.
Prograph’s application builder (used to generate user interfaces) allowed rapid development
of the user interfaces. Another advantage to Prograph is that it is relatively inexpensive and
readily available.

Shiva’s ASC microarchitecture simulator was demonstrated to an introductory
computer organization class studying the ASC microarchitecture. The class found the
simulator to be quite helpful in learning the concepts of the aichitecture as they could trace
through complex microinstructions in a short period of time without having to keep track of

all of the parameters.

C. RECOMMENDATIONS FOR FUTURE RESEARCH

There are several areas of research that logically follow from this work. As is often
the case in research, more questions were raised than answered. With a basic ‘generic’
class hierarchy designed, it is possible to pursue experimenting with ‘families’ of
architectures. The object-oriented approach should prove to be ideal for this too in that one
should be able to implement the ‘lowest” member of a family (such as the 68000
microprocessor in the series of 680x0 microprocessors) and inherit the features of that
architecture as one moves to other more advanced members of the same family.

Even though this research was performed using Prograph, which was found to be an

excellent language for the development of these systems, it should also be very interesting

67

to investigate other object-oriented (or object-based) languages for implementing
microarchitecture simulators and comparing the development effort with the results of this
thesis.

The simulators in this thesis used text files representing the object code of the
macroprograms and microprograms. The micro/macroprograms were assembled by hand
and represented in the text file using ones and zeros. The usefulness of the simulators can
be increased by developing micro/macro assemblers which would generate text files
compatible with the simulators developed in this thesis. It should be possible to use object-
oriented techniques to develop ‘generic’ classes which model various assemblers for
different simulators.

Although these simulators were very useful for classroom instruction, simulators are
most often used in designing actual systems. For a simulator to be useful, it is necessary to
build into the components some automatic monitoring functions. An example would be a
counter that determines how many times memory is accessed for each macro level
instruction execution. One could also include in each object a facility to maintain an
‘execution history’ that would record the usage of components and the frequency of each
component’s use.]

As previously mentioned, a new ALU class had to be designed and coded for each
microarchitecture implementation. Research into designing a ‘generic’ class hierarchy in
support of ALU design would be another area of challenging research. This would require
the specification of control signal inputs, functions based on control signals, and status
outputs. All vary greatly among different ALU’s.

With growing interest in multiprocessors, it would be logical to persue

multiprocessor simulators. This would require investigating timing effects of all operations

68

involving each component. After obtaining timing information, new data structures will
have to be introduced to account for timing constraints.

Finally, the development cycle when using the simulator to design a microprogram
could be shortened by integrating a microprogram editor with the simulator. Presently the
programmer is required to write the microprogram, load it into the simulator, and then run
the simulator. The user then has to evaluate any required changes, stop the simulator, edit
the microprogram text file and repeat the process. This could be simplified if the simulator
were integrated with a microprogram editor.

69

APPENDIX A

This Appendix contains the revised ‘generic’ classes derived when implementing the

Tanenbaum design microarchitecture simulator.

Class: ALU

Superclass: none

Variables: none

Methods: and, or, not, math, zero?, positive?

Description: Represents a combinational circuit; thus, it
has no state. Methods are provided that perform logical
operations on a stream of input data.

Class: CONTROL STORE
Superclass:
Variables: contents:

. (array of MICROINSTRUCTIONS)
Methods: load
Description: Holds the entire microprogram. It must be
loaded with the microprogram prior to any simulation

execution.

Class: MAR
Superclass: REGISTER
Variables: none

Methods: mar

Description: Contains an address of a MEMORY
LOCATION within a MEMORY BANK. The method
mar accepts a control signal which determines if a value is to
be stored into the MAR.

Class: MBR

Superclass: REGISTER

Variables: none

Methods: mbr

Description: Models the data interface to the memory
bank. The method mbr accepts a control signal which
determines if the data input will be written to the MBR.

Class: MEMORY BANK

Superclass: STORAGE LOCATION

Variables: contents: array of MEMORY LOCATIONSs
Methods: load, read, write

Description: A read or write to a MEMORY BANK
implies a read or write to a specific MEMORY
LOCATION contained in the MEMORY BANK. The

70

method load is used to load a user program or data into the
MEMORY BANK.

Class: MEMORY LOCATION

Superclass: STORAGE LOCATION

Variables: none

Methods: = none

Description: Used to describe the contents of a location
in a MEMORY BANK.

Class: MICROINSTRUCTION

Superclass: none

Variables: instruction (string of bits)

Methods: none

Description: Defines data structure that describes a
microinstruction.

Class: MICRO SEQUENCER

Superclass: none

Variables: none

Methods: generate signal

Description: Simulates the micro sequencer component
of Tanenbaum’s architecture. The method generate signal
sends a signal to the mux for controlling logic and
addressing of the MPC.

Class: MIR
Superclass: REGISTER
Variables: - none

Methods: decode

Description: Contains the various control signals. The
method decode is used to parse the register contents into
required control fields.

Class: MPC

Superclass: REGISTER

Variables: counter, cycles

Methods: set, increment, jump, set cycles,
get counter

Description: Models a microprogram counter.

Class: MUX

Superclass:

Variables: none

Methods: mux

Description: Models a combinational circuit. The output
is one selection from many inputs.

Class: REGISTER

Superclass: STORAGE LOCATION
Variables: . none

71

Methods: none

Description: Defines how the data is represented in a
system, (i.e., how many bits represents a register/memory
location).

Class: REGISTER BANK

Superclass: STORAGE BANK

Variables: contents: array of REGISTERs
Methods: load

Description: Similar to a MEMORY BANK.

Class: SHIFTER

Superclass: none

Variables: -~ none

Methods: shift left, shift right, no shift

Description: Models a combinational circuit. Methods
take a binary input and perform a binary shift to the left or

right.

Class: STORAGE BANK
Superclass: none
Variables: contents:

array of STORAGE LOCATIONSs
Methods: initialize, load, read, write, binary read,
binary write
Description: Defines data structure and methods for
modeling a general storage object. Allows for access using
both integer and binary address references.

Class: STORAGE LOCATION

Superclass: none

Variables: contents: string of bits

Methods: initialize, read, write

Description: Provides methods for accessing
(read/write) a storage location in a memory or register bank.

72

APPENDIX B

This appendix contains a sample user session for the Micro Simulator and the ASC

Simulator.
T l Mi Simulator:

The Micro Simulator is started by double clicking on the application icon labeled Micro
Simulator. This causes the application to load, the initialization of the menu bar, and the
following dialog box to appear:

Define Registers & Memories

Register Width: 16
Number of Registers: 12
Number of Memaories: 20
MAR Size: 12

—

The user is required to enter values for each field in the dialog box (the above values are
defaults). After all values have been entered, the user presses the Enter key or clicks the
OK button. In this example, the Register Width field configures the simulator to have a 16
bit data path for buses, registers, and memory. The Number of Registers and Number of
Memories fields configure the simulator to have the respective values simulated. In this
case, 12 registers and 20 memories have been selected. The MAR Size field specifies the
number of bits the MAR will use for addressing the memory. These bits are the low order
bits passed from the data path to the MAR,; this example specifies a 12 bit MAR.

The Tanenbaum design uses a set of registers, including general purpose, special purpose,
and constant values (registers 6, 7, 8, and 9). Register values can either be loaded into

73

their respective registers individually by using the Alter Register command (discussed
below), or they can be loaded from a text file by using the Load Registers command in
the File menu. To initialize the registers using a text file, select the File menu (click or
command-J), its choices are shown below:

Load Memory 3L
Load Registers #J
Load Control Store
Quit ¥0

Choose the Load Registers selection (this can be done by either clicking with the mouse
or using the command-J key sequence). This action displays the file selection dialog box
as shown below:

3 Micro 6.1 [
D decrement.exe e DirectDrive
O program.asm

Q register.set (_Eject]
D stack.asm (mive)

(Open)
G| (_Cancel)

Select the name of the text file that represents the desired register configuration (in this case
register.set). There are no restrictions on naming conventions for any text files
associated with this simulator. The two buttons Eject and Drive are disenabled (cannot
be used) because there were no other drives mounted during this example. The contents of
the register.set text file is shown below:

0-0000000000000000 Program Counter
1-0000000000000000 Accumulator

74

2-0000000000000000 Stack Pointer
3-0000000000000000 Instruction Register
4-0000000000000000 Temporary Instruction Register
5-0000000000000000 0

6-0000000000000001 +1

7-1111111111111111 -1

8~-0000111111111111 AMASK OFFF (hex)
9-0000000011111111 SMASK 0OFF thex)

The text file format for both register and memory descriptions is the same: any number
(representing the location or address), followed by a dash (‘-’), followed by 1’s and 0’s
(which represent the bit string), followed by a comment The numbers in the text file are
for the use of the programmer only; the simulator loads all binary strings in order starting at
location zero. The results of loading this text file into the simulator are shown in the
register scroll box below (found in the simulator window, this example shows locations 5-
10).

05--0000000000000000
06--0000000000000001
o7--111111 11111111 111
08--000011H111111111
09--0000000011111111
10--0000000000000000

Next, load an object code program into the simulator’s memory (this is a text file
previously saved). This is done by choosing the Load Memory selection from the File
menu as shown below (by clicking or command-L key combination):

Load Memory *L
Load Registers XJ
Load Control Store

Quit ¥Q

This causes the file input dialog to be displayed. Selection of the decrement.exe file is
shown below:

75

S Micro 6.1 ™

S virectorive
O program.asm _
D stack.asm (_gject]

([mive)

([open]
5| (_Cancel]

The decrement.exe program is a simple program that loads a constant ‘4’ into the
accumulator, pushes it onto the stack, dectements the accumulator value, and continues
four more times. After completing this task the program remains idle by reaching step 5’
and then continuously branching back to step ‘5°. The text file of this program is shown
below:

00-0111000000000100 LOCO 4 Loads the constant 4
01-1111010000000000 PUSH Push AC onto the stack
02-0011000000001100 SUBD MEM(12) Subtract memory loc #12
03-0101000000000101 JZER 5 if AC = 0 then PC := 0
04-0110000000000001 JUMP 1 Set PC := 1
05-0110000000000101 JUMP S Stay running idle

06-0000000000000000 *=
07-0000000000000000 **
08-0000000000000000 =*=*
09-0000000000000000 *=*
10-0000000000000000 **
11-0000000000000000 **
12-0000000000000001 Constant 1

Now that the program is loaded into the memory, it is necessary to determine where the
stack pointer will point (recall that only 20 memory locations were defined in this example).
In this example the initial stack pointer location will be initialized to 11°. This is done by
using the Alter Register command under the Controls menu. This operation is shown
below:

76

Controls

Define Memory
Alter Register

#A

Cycle XS
Single Instruction %1
Multiple Instructions 3R
Set MPC XM
Run # of Cycles %N

Selecting the Alter Register operation displays the dialog box below. We want to
change the stack pointer (register 2) to a value of eleven. A 2 is entered in the Register
Number field, and the appropriate string of 1’s and 0’s are entered into the Register
value field. Press the Initialize Register button to enter the value into the register. The
dialog box will remain displayed so that other entries can be made. Press Done to remove
the dialog box.

Initialize Registers

Register Number: |2
Register Dalue: 0000000000001011

Civianme regiie

At this point the user program is ready is ready to execute. Execution can proceed by one
of several methods which are selected from the Controls menu. The Cycle command
causes the simulator to execute one microinstruction. The Single Instruction command
causes the simulator to execute the necessary microinstructions to complete one
macroinstruction. The Multiple Instructions command displays a dialog box
requesting the desired number of macroinstructions. The user enters this value and the

7

requested number of macroinstructions are executed. The dialog box for this operation is
shown below:

Enter desired number of Hécro instructions to execute:

4

U
———

The Set MPC command of the Controls menu is used to reset the MPC to an input
value (to alter microprogram flow). The dialog box for this operation is shown below:

Set MPC

The Run # of Cycles command of the Controls menu displays a dialog box similar to
the Multiple Instructions command, except the simulator executes the desired number
of microinstructions.

The sample program can be run with any combination of the above commands. The
diagram below shows the contents of memory after the decrement.exe program has run
to completion:

78

00--0111000000000100 &
01--1111010000000000 | |
02--0011000000001100
03--0101000000000101
04--0110000000000001
05--0110000000000101
06--0000000000000000
07--0000000000000001
08--0000000000000010
09--000000000000001 1
10--0000000000000100

Referring to the above figure, it shows that the numbers 4, 3, 2, and 1 were loaded into the
memory locations 10, 9, 8, 7 respectively. Notice that the first location loaded by the stack
pointer is 10 (recall that the stack pointer was initialized to 11). This is because the stack
pointer is decremented before the value is written into memory. The above figure also
shows that location 7 is highlighted; the simulator highlights the last value written to (in
both the register and memory banks).

ASC Simulator:

The ASC simulator is very similar to the Tanenbaum simulator. Most of the menu
operations have the same effects. The following is a sample session with the ASC
simulator.

The simulator is started by double-clicking on the icon named ASC. This causes the
application to load, the menu bar to initialize, and the following dialog box to appear:

79

Define Memories

Enter Desired Number of Memories:

20

—

This dialog box simply initializes the number of memory locations, in this case, 20. In this
simulator the bus, register, and memory widths are hard coded to 16 bits. All of the
registers have specific purposes, as discussed in the thesis body.

The next step is to load the sample program into memory. This is done by selecting the
Load Memory command from the File menu as shown below:

Load Memory *L
Load Control Store
Quit %0

This action displays the file selection box shown below:

80

€3 ASC '

D ASC Design Notes e DirectDrive
D ASC.micro
0 decrement.mac [Eject)
D increment.mac (vre)
D programi.mac
D program2.mac

(Open]
5| (_Cencel)

Selecting the decrement.mac text file as shown above (previously saved text file) loads
the text file contents into the memory. The contents of decrement.mac are shown below.
This program loads the accumulator with the value ‘15 (located at memory 8). It also
loads index register #1 with the value ‘5°. It places the contents of the accumulator into the
memory locations 11-15, then the program repeats. This simulator uses the same type of
text file formats as the Tanenbaum simulator. Similar actions can be executed by choosing
Load Control Store from the File menu. This will load a microprogram represented by
the text file into the control store.

00-0001000000001000 LDA W/MEM[8)
01-1100000100000111 1DX INDEX 1 W/MEM[7)
02-0010000100001010 STA 10,1
03-1111000100000010 TDX INDEX 1 BRA 2
04-0101000000000001 BRU 1
05-0000000000000000 **
06-0000000000000000 *~*
07-0000000000000101 CONST 5
08-0000000000001111 CONST 15
09-0000000000001001 CONST 10

At this point the program is ready to execute. The ASC program execution controls operate
with the same functionality as the Tanenbaum simulator. The Controls menu is the same
as the Tanenbaum Controls menu except there is no Define Memory selection. This is
because only one register can be altered, the program counter (PC) register. The PC can be

81

altered by choosing the Update PC selection from the Registers menu. The dialog box
resulting from this selection is shown below:

Enter Desired Register Ualue:

0000000000001111

Using the various controls (as discussed in the Tanenbaum Example) the program is then
run to completion. The memory contents after execution are shown below:

06--0000000000000000
07--0000000000000101 i
08--0000000000001111
09--0000000000001001
10--00000006000000000

12--0000000000001111 |7
13--0000000000001111 |ii
14--0000000000001111
15--0000000000001111

B
33253!

]

Memory locations 11-15 contain the value initially loaded into the accumulator 135.
Memory location 11 is highlighted because it was the last memory value written to.

82

APPENDIX C

This appendix contains the source code for the Tanenbaum design microsimulator.

83

biminin

i
]

PRI
>3 Ipj o] *] »fivie

wolalolp?
ldidis

€9 Qoapett Miwe Tha, Awg 15, 1901 1230

, Semd S
Sasel chwe naee Sont, Losuman sum,

o gt Conwet Wit
f) S g e
Initisi-aereti Deserpins. BuvaNase ool wpeai-asrel Daoervess ¥ comvni & TAUE vpdomss saves

) e mpw sae
oun Whges; Ve asmoee
"ﬂ Ouarpton: Upeaies e F’J Ostrpoen. Asase Seup
2] WS At asnvut voiees t dohng bes
wpdate-display Prered
VS Wngew iSwmnee
2 Roguser . ”h-‘ apeiy: Window: e Omts gt

= o

S W, e, gt ey
" Peen wgew WA pvt L Ovee:
upsalie-veiue updote [rewsny ey
v Wn. Costel Mame e | et Whr: Mame: Bestenn
ﬁ"! Oviosts: Sustnsn Novmer 9ot f.! Osaarpien: 0on thesttas 1 vwy o
sotiing Owtension Deweongs ¥ o sot-gatiingfene
LT ™

e, Fiet
UPtaie-string 10N UG b Re i Wi

@3 sim/sat tant 1:2

01 Qomort Mam Tha, Acg 15, 1901 1290

@3 sim/set tent 2:2

@3 sin/set MPC 121

@D sim/gat mpe 121

61 Goasetl Mww The, Avy 1S, 1007 1330

@D sim/inltislize register 1:4

sima/register init dene 1:1

@ sim/get-aum 1:1

69 Gonow) Muse Thy, Aug 15, 1907 130

@ sim/initisl velues 121

@3 sim/detine 1:1

41 Gomomt M The, Amp 1. 1991 1930

@3 sim/update-scroll 123

@ sim/upgete-screll 1:1 @ bulld-Hne 1:2

€1 Gonort WIS The, Aug 1§, 1907 1330

@ sim/update-scroil 1:1 @D bulid-line 2:2

sin/initiat-scron 121

@) sim/initist-scron 1:1 @8 buld-Naes 1:2

61 Qonor Mame The, Aug 15, Y90V 1230

@ sim/initiet-scro¥t 1:1 @ build-lines 2:2

@3 sim/6et Window 1:1

@ sim/wpdate-veis 1:1

@D cim/setting 1:1

61 Gonoent Mase The, Aug 1S, 1901 1330

@D sim/updste-integer 1:1

@D sim/shew reg Wit 1:1

61 Qonopt M The, Asg 15 1901 1220

0B sim/show reg lait 1:1

$ waus Reglee

@ sim/update-string 1:1

@ sim/activete 131

€D sim/desctivete 121

vV mMon

mowis Coovst (Y). Bwe

L Ouus tene

war DONCrEUSA ¥ ssawet it TRUE wrise Ses spet
e B MR

69 Goroml Muve The, Aup 15, 1901 1330

@ MBR/mbr 121

V Ma

B MRR/maer 1:2

@ MAN/mer 22
CEnE———
MAR Seese om
e Meme
Lin
]
caxzxsandaunTem
V register

SV Gongmt MAW® The, Asg 5. 10T 1220

@D register

T storage lecation

@D storege tecation

Simage Lamne B paeied Perstast
wous: Buare Name mpun Siere Nome; Bus
Ovguis. Contonns Owipuis: Contonts

€3 sterege location/read 1:1

@ starage locotion/write t:1

61 Gongmet 00 The, Avg 18, 190 1330

@B storsge lecstion/init 111

@B sterage lscation/init 1:1 (B bulid Nst 1:1

V memery lecation

@ memery tocation
v M
A
[LU
[2) G ot e
Ovpwt: Conrt Sigasty
Proneil Parmes

€9 Gonorns (e Th, Aug 15, 1901 1330

@ MIR/dscade 1:1
vV MrC
i o
v
aontonts
[']
\Y
sysies
[3
v
counter
@ mrc
pumn: Nend ; g
Insroment DIOUBINA Waeumonn oymo Snd suttnr LU Deswptnn. Sets coniests of MPC
varebine. 1aSlaASe % masitaied # e NS 19 AW vaiee
PG oo
wous Bus faemgen)
&) = [== ioem
ser Ouwerghen: Changes v of ot oystes DISIRn. en e eysies swBue
Cantonin of he MPC gianse % e Pt valus. Ronsts Seumar
e B B MPC Bigm Pomiset e 9 0. Unas Be MPC Sure
Poraatont
991 counteDeenpun: Sawe

@B MPC/increment 1:1

6.1 oot Mise The, Aug 15, 1001 1230

60 MPC/ jump 121

@ MPC/set 120

@2 MPC/set cycles 121

@ MPC/get coynter i:t

7 sMifter

@ shiter

o W et Mgre e

NN W
shifter OVDUL REER PoR. AP, RGN

Gt Qovergt Mee The, Avg 15, 1901 1330

shifter/shifter 1:4

FaLSE raLsE

@ shifter/shifter 2:4

@D shifter/shifter 3:4

@ shifter/shifter 4:4

@B shifter/shifter 2:4 @D right 1:%

@ shifter/ehifter 3:4 @D teft 1:t

61 Conomi Mo The, Avg 15. 1901 1230

vV s

O s

0D ALE/Righ BIt 120

@ MLu/math 135

MalbFflad Al

@D e/meth 233

Matfled Asnd

69 Qouprat s Thy, Agg 15, Y000 1230

@5 ALY/ meth 3:5

Mebif=l A

@ Y/ meth ¢:5

Metbflatam

& ALY/ meth 5:5

|

3\

@ AL/ zere 121

@ aLv/zers 1:1 @D Chack 2ER0 1:¢

Ponish Exspstitn
IThoa 1ot

€1 Guasest M0 The, Aug 15, 1991 1231

e w

g

odd 1:t @D sdd list 129

61 Conoms MR Thu, Aug 15, 190¢ 1331

@ ALU/bit add 1:1 @D add st 229

€ ALU/bit sdd 1:1 3D sed Net 3:3

@ ALU/bit udd 121 @D odd list 419

@B ALU/bit aed 1:1 @D add Nst 5:9

@D ALU/0it agd 1:1 @ edd Vst 6:9

@ ALU/bit add 1:1 D add st 79

01 Gonomt M The, Asg 18, 1901 1300

@B ALU/Bit add 1:1 @D add Hst 833

@0 ALU/Bit add 1:) @D add Nst 59

) oner » aue i

V micreiastruction

o i
: I«; faf

st saf s Baf baf :<1§ ta

:

F

.dﬁ “qi

f<tfa- -<1§

4% Gomomt Mtww The, Aug 15, WY 1237

V contrel stere

@D contrel sters

1 ot Bue Neme Fpvn: Stom Name
[I.J on-u-w-—
iale ¥ &e. o Bads

s Sawe Nawe. B
RI "owt Guw Name: ot Lessen Ovous: Revass Contral Sive Comomn
Fl. Ouput: Comsente Osparge u-. aow MoremevcInn
rese Iesotion e Convul Sire somisnt.

€ contrel stere/resd 1:1

@D contrel stors/edd lacatien 1:2

@ contrel store/edd location 2:2

€1 Qonoms M Th, Ang 15, 190 1300

@D contrel stors/lond 1:1

@5 contrel sters/lend 123 @B get-fils-tent 1:1

@3 contrel stere/losd 1:1 @D read Kaes 131

61 Qonors Mo The, Asg 5. WOD1 15

@ contret stera/isas 1:1 @D lead storage 13t

@D contrel stere/load 1:1 @D resd tines t:1 @D dbulld micreinstruction 1:1

@ contrel stere/init 1:1

61 Qonovnl 48eve The, Aug 16, 991 1330

) nime

@2 Time/get day of yeor 1:t

$1 (0 31 S8 90 130 151 1801 212 343 273 304 234 M4)

& Time/get doy of year 1:1 @ do Wwep 1:2

@ Time/gat gay of yeur 1:1 @D ¢o lewp 2:2

Gt Gononyg v Tha. Avg 15, Y901 1331

= a0t & o your
o | Jon or Py

€ Time/get month name 1:1

§1 Wesvery Febmaty Mk AprS bioy June July Avgunt

2 Tims/get say name 1:1

4t (Suatey Mengey TuaeDby Wenesssy Ty Fadny Ssustey)

@B Time/get duy of week 1:1

@3 Time/get goor 1:1

€ Time/get menth 1:1

@B Time/get heur 121

61 Gonaesl Mo The, Avg 15, 1001 1291

@B Time/get minute 1:1

@ Nima/get second 1:1

@0 Time/gst dote 121

@D Time/get time 1:1

@D Time/get goy 121

T sterage bank

61 Gomnegt Mo The, Amp 15, Y000 13

@ storage bank/lesd 1:1 @B got-file-text 1:1

61 Goasiws MBS Thu, Augp 15, W1 1331

€3 sterage benk/lead 1:t @ read lines 1:1

@B sterage hank/iend 1:1 BB lead sterage 1:1

@ sterage bank/read t:1

81 Comongl Mign The, Aug 15, 10OY 1330

@D sterage benk/write 1:2

stersge benk/write 2:2

stersge bank/init 1:1

@ sterage deak/init 1:1 @ build sterage 1:1

0y Qosoml Muwe The, Awg 15, HIOT 1301

@ sterage benk/BiN-reed 1:1

@ storage bank/BIN-read 1:1 @D sum integers 1:2

) sterage bonk/BiN-raad 1:1 @D sum integers 2:2

@3 sterage bonk/BIN-write 1:1

01 Qosoms (e Thy, Asp 15, 1991 1231

@D sterage benk/BIN-write 1:1 @ sum iategars 1:2

@0 sterage benk/BIN-write 1:1 @D sum integers 2:2

V memery baak

® memory benk

r;J DIOSmuton susolies appusnate Seve r" Mpvis Bus input: Weas Corarel (TA)
L ® NPT 108 MUt fi aing [95) Ovsute: Losshon Vame: 4t Lansesn
leag O Tamuy sash weite

rlj npuin. Comvel (TH) 1 oasdis mad
Dvaorgtion: Liges MAR eontenss 30
tene "".'-‘-—'l Wrise sauhe
»

@D memery beak/read 1:1

01 Qoo lhae The, Aug 15, YO0V 1311

@B memeory bank/resd 1:1 ED sum integers 1:2

6D memery benk/resd 1:1 @D sum integers 2:2

memery benk/write 1:2

D memery baak/write 2:2

61 Qenont M The, Asp 5, YO0V 1391

@B memary beak/write 1:2 @D sum integers 1:2

0 memery benk/write 1:2 §D sum lategers 2:2

@ memery bank/loed 1:1

]
registor [£]
—-tql uere ! 5 [}
..
§1 Momary Somd
§2. Momory Vaies
V micre ssquencer
0 micre sequencer
mput: H2.Cony
Ovpwt: Boainan Convul Bigan)
gonenaie signel

@D micre sequencer/genarate sigaal t:5

Do ot Jusp
CEavtwie wont Mo
Morvchon

A1 Goromi them The, Aug 16, 100t LI

@ micre sequences/generete sigael 2:5

@B micre sequencer/gencrete signal 3:5

@D micre soguencer/genarate sigasl 4:S

@D micre ssquancar/gansrate signel 5:3

v Mun

87 Qonsrat 0 Ty, Auy ¥, 100V 1231

@ MUK/mun 1:3

@ MUN/mun 2:3

@ MUN/mun 3:3

V register bank

@ register denk

WD register bank/lesd 1:1

§ Regemw vetuse

&9 Goagml Be The, Aug 18, O0) 123V

@B register honk/lond 1:1

i
i

61 Goadewt Shive Thy, Ang 15. Y900 129

' Duasrbuss: Otupioys Abow duteg Onegeien: Cisass a8 widoes, ssvveme
0 Senp WNEI, ond Gasbies mans ber
Avort tiorn Sl el
Omafomn INESISS B Soveln, :
0 By MPC. WEbtaes e Svmer, ' —._‘-:.';-—q-u:—-‘
talialige SN Slabiss B Mns bur oyate
Exonns e aimmieter wput: Iatoger
'-on-u-—'c—q.. ' :‘: Esestes eumutuer tor
Creies multiple eyeles

e e ®
single masee meay maee b
vt Sung of Yo 4 O gt Lt of Beshane
Oepet. Ut of Geslsans Ouput: gumg o Vo & O
string-Sinery Sinsry siring
fgut mger foput: 2 tom At
Oupu: Liss of buntonen ' Oues: £ o
int-bingry 0t sonirel
' Dunerpion: Saatise manw b ' Duoespuen: Olosiias masy tur
wadle [
Coomrginn: Sots Bhe eumer Wgut Lst of betisare; 8
8 Waun ' Owpes: List of 04 & Moms
wateh L
@D ensdie 1:8
@B dinadle 131

61 Govornt A The, Avg 16, 1001 1498

@ weteh 121

§1. SAler ool SURB ¢f MITe RIVUIISNS I EEIWS:

@D many mecre 1:) @B mecre cyties 1:1

@B meny mecre 1:1 @D macre cycies 1:1 @ losp increment 1:2

=

@D mony mecre 1:1 @B macre cyctes 1:1 @B isep Increment 2:2

—]

41 Guassd Miem Thm, Axg 05, 1OV 1448

@ siagle macre 1:1 @B micre cycies 131

(e

9
if

.]
@ multiple cycles 1:1
@ Cycles 121
L |

i

1 Ester Doared ¢ of Mashing Cyoine ® o

@ int-dinary 121

b4

&1 Gonomi Misw The. Aug 15. 1081 1410

@D nt-dinery 1:1 ED bulid Nst 1:1

@D Wt-dinery 1:1 @ buitd Nst 1:1 @D coavert num to dood 1:2

@B lat-dinery 1:1 @B duitd Nst 1:¢ @B convert sum to beei 2:2

@ got contrel 1:8

@ cycle 121

000000000000
e josnsyets 2] -

(Ll s
s jatoyus 3] |

61 Gonomt Ml Tha, Aug 15, 100 i008

L |
"
g Wit
L]
=B
Murs Symsister

~ \\\\\\“ \\ N
lll\m\\ ==

@D cycie 1:3 @ swbsycie 2 1:1

i""“"
T "qﬂ

89 Qonmet Miem Tha, Aug 15, 981 1418

61 Gontent Miwe The, Augp 1S, 190 1498

§1 (MDA MAR Read Wvte ENC)

€1 Graswst M T, Aug 15, 1907 1419

@B cycie 1:1 @ subcycte 1 1:1 @D vpdats instruction 131

cycle 1:1 @ subeycle 2 11 @D (1] ”

@eyco 210D yele 2 118D 1B

D cycie 1:1 @0 sudcycle 3 1:1 @D uvpdate MAR 121

6 Gonoend SR The, Ay 15, Y90Y 1499

@D cycie 3:1 @D subcycle 3 1:1 @D updote meth 121

@D cycte 1:3 @D subcycie 4 1:1 @D wpdate Mor 121

@D binery-string 1:1

01 Qonomi Miam The, Avg 15, Y001 10YD

@B dinary-string 1:1 @ dinary-esci 1:3

@B bvinary-string 1:1 @ dinary-escii 2:3

|

@3 dinsry-string 1:t @ dinsry-escit 3:3

st

§1 ormer » Bmary-aoel

@0 string-binary 1:t

@D string-binary 1:1 @D sscii-binery 1:3

@ string-dinsry 1:) @D sscii-blngry 2:3

o] |]| 1

1 Qonmsat Miwe Thw. Ang 18, T90Y 14110

@ string-dinary 1:1 @D escli-binery 3:3

@ initislize 121

i
il

@ dot laft 121

@D ¢oiiaft 1:1 @D Remeve 12}

61 Qonomi Minm The, Asg 15, 1007 1410

o any moee

& Show satep

et

§1 CMc Simoiter “Sotep” “Maiaine Repisnn’ MPAC Wingpe” “Abet NFS Mo Siminner)

@ About Micre Sim 1:1

EE————

@B Rvout Micrs Sim 1:1 @B Bisplay Bate 121

- tom
0« shont
1= ey
2= long

@B fdeut Micre Sim 1:1 @D Dispiay Time 1:1

6.1 Gononl Mars Ty, Ag 15, 1901 1418

APPENDIX D

This appendix contains the source code for the ASC design microsimulator,

133

Y-
L

ASCILPGE P4, Amg 'S, YUY A0

@D MIR/mbr 131

V mMan
~.
@ M
V register
.
4 register

7

{l

¥
H

4B register/sond low 1)

V sterage lecstion

ACI1PES Pn, dug 0. 1001 893

@ sterage locotion

@B sterege lacetion/read 1:1

@ storsge location/write 1:1

@B sterege lecetion/init 1:t

@D sterage lecation/init 1:1 @ bulld Nt 12

ASCY.POS Fr. Auy 18, 100t 894

V memery lscstion

@ memery lecotion
v Min
S,
oM
Comtrnd : Contret
B =anme @) =omse.
teeede ¢ " e Gosede 1 OWNGE: Supus Whe ehe Signats
200 el sigeen

@B ~MIR/decode 0 129

ASCILPGR P4, Aug 10, 1001 0%

@B MiIR/dscode 1 12}
v Mec
2
v
ssstents
[}
v
L)
L]
v
sounter
@ mrc
FEJ Dospsipihttns: Sons Suvelll Adms II?J Ounerptn: Usee MPC S
|¢.u-m:'°—:='~-—u-— 991 SOURIMNT SUmMONS of cavamer
[oy] oo e w0 s
jump Douspiion: Rowm eontents T
wpsty: Deswes & of
o I T)

@ MPC/incroment 1)

ARCYPOE P, A 15, YO0 808

@B MPC/ Jemp 1210

@ MPC/s0t 1Y

@B MPC/sel cycles 1:1

@B MPC/get counter 1:1

ASCILPOE P A %6, W0 898

<t kf

< e} |

2idile

afiq

§¢§i
. 1

{ 390 30)

ASCI PGS PA Axg W, 100 A8

-

-*

r" Dossrption: Casbiee asows,
190 sotame MPC oary Gty des
. mps
pun. «cANREIVS
1 Omepmms nmstes
[LJ Topur bomk 1 GISres
nkialze M’ll".'

F]' pus: Wingew Nams
Culsss: sctiunisnns
astivate DEEUN: Adies Windsw

Conral. caWindwry>. Sorell siime.

(J) = et o F vt ot Lavitian s St W
b Sormgs e somw; L2) Decnpuss. 5 canvei & Wve. W seren
Innsai-serel. Sod "t vae.

[1j [Oompiies. ASvens sltup Suing Bos

3 Dossrpns: gois gt o Ly
nitiel veisettieg Getine

opuiare sag momery bosh.
by ; oiie; NI lngune)

ORepme Usisns SRgy B ghen St

Dasorpion wpantes et Som tednteger

VPES10-VEING guun wmume B Mgt

mwm
Dossrpes: Dstormmes & &

B e e

g O sat-aetiingtene.
P »om et & 6N et
@ === Za
oot mm ©8 num o0 o wedsiosiriag 0
r1j puis; Winduw eame; Mals ASmS; 4 | ediiBimuny: Nom: Do bou
L ..n-n FJ Oonerpiiss: Upuintas & @apley Som
upesie-eatOWBN <t - ot tem .ﬁ:‘:".""""" Shaenad

L
r' Cosrptun: Degstwenss FC
[80) aaeg 20x, gom o vene
valve enanee

update pe SN Wit PC
YT

f) =

ot swring

B mem———

ot 9o windew

@B sim/set tent 1:2

ASCI.PGE Pa, Ay 16 100 297

@D sim/set tent 2:2

@3 sim/set MPC 121

@D sim/get mpe 1:1

ASCYPOS P4 Aup 16, YD1 308

@D sim/initiolize register t:1

@D sim/get-aum 131

@ sim/nitial yaluss 131

ASCI PO Fx, v 98, Y1 11

@D sim/initisl valuss 1:1 @D initialize Memery /8 registers 1:1

2 sim/initiel velues 1:1 @D Cleer Misc displays 1:1

@D sim/detine 121

ASC1 PGS Pa, Awg 16, 1801 092

@B sim/updote-scroll t:1

@D sim/update-scroit 1:1 @D duilé-line 1:2

ASCYLAGE Pn. sag 10, 1001 813

@B sin/updete-screll 1:1 @D build-lne 2:2

@ sim/initiot-screi 1:3

@ sim/inltial-screll 1:1 @D dulid-tines 1:2

ASCI P Pa Avp 15, 199 014

@ sim/initinl-scroll 1:1 @B build-Hnes 2:2

@D sim/Get Windew 1:1

@B sim/updete-volus 1:4

@D sim/update-vaiue 2:4

ASCYLPGR PR, Aug 18, WY B8

A sim/ypdate-value 3:4

@D sim/updote-value 4:4

@D sim/setting 15t

@D sim/set-setting 1:1

@2 sim/updete-tate i 12y

ASCIPGE Pa Avg %0. 00T &V

@D sim/updete-striag 1:1

@D sim/sctivate 1:1

@ sim/dsactivate 1:1

@D sim/update-adit 121

ASCIPOS PA, Ay 8. 1001 517

@D sim/updete pc 1:1

@ sim/get pc windew 1:1

(llll“

|

Il |
K II\
E

B

@D sim/gat string 1:1

T nden bonk

ASCILRGE P, Avg 10, 9Bt 2100

@ wden donk

@ ingen bank/zere inden 1:1

amber —ten store
O Geaten ;
L []
Contonts
[atuiasre]
Tws 80
P R Y
v
{)
veote
Dn

@ W/parse 1:1

 micre contrel

ASCISGE 0 Asp 18, 1081 018

D micre contrei

Comons @ Comvet S

rl Donmipiee: wets el s i‘ll Ouapton: 82000 o MPC wiwm,

1355 =% wemess oo w0 EnaaswIDe - SESSEN CORINES of SUSbU! s
00 conirel ieve lomiion

pus: A maeR; POR Ovipuis: TRAI: TRAZ: ADD: COMP.
[Ell Doaspien. gusmune b 3 1 .y
£F @w vesst o0 coewt s [Lq Ovenvgtion: Ganemmee ALL ’
Susl Sigeale ALY Signele Comved

@B micre contrel/mew 1:1

@ micrs /mev 1:1 @D 0 Tyse t

/mev 1:0 @ P Tyee ? 1:1 @ Updete MIR/MPC Sispiays 1:)

ASCIPGE P, Ay 90, 1907 81

@ sikcrs /mev 1:1 @B P Type ¥ wetion 121 @D 19

@ micre /once 1:1 @D P Type tion 3:1 @B 2:9

@ micrs /mce 120 @D ¥ Typs tiea 121 @D breach 319

ABCI PGS 74 Ay V0. ¥ 022

/mev t:1 @D P Type t jon 1:1 @D «@9

@B micre contrsl/men 1:1 @ P Tyse § 1:1 @ pranch 529

= ww =w
e

§1 Mocveaste envany Baah £ OATACR .. s & Oad

ASCIPES Pr A 10, 1001 630

@B micrs control/men 1:1 @D P Tyoe t tion 1:1 0D 9

@3 micre contret/mecu 1:1 @ Precess Type | IHE] h 8:9

@ micre contrsi/mes 1:) D Process Type 1 wection 1:1 @D [5]

RS e §ACC s

J Brpach el vt MOONe santidiyr full 19 doltul a0

B micre /mcu 1:1@D P Type 1 tion 1:1 @B Bisplag 1:1

ABCI.FGE PA Am 14, YO0t 08

——-————————

@ micro central/mey 1:1 @ Procass Type | Microinstruction 1:1 @D Updete Display 131

@2 micre contrel/rand control stere 1:1

§1 comwra oum

€D micre control/Bus) Pete 1:3

Mom ALl SvedBus2 Bus 1

@ micre contrel/Bust Date 1:1 D generete dus! dota 1:8

@D micre controi/Bust Dets 1:1 @ generste bust dete 2:0

ASCY POS Fn, Avg 1. Y00) AT7

@B micre contrei/Bust Bete 1:1 @D generate bust dote 3:8

rass ™ PALSE

AR St
——
Baere Mome

@D micre contral/Bust Sate t:t () gencrate bust dota 48

ThUE TRUE FaLE

41 PALSE FALEE FALRE PALSE FALEE FALBE FALIE FALIE)

5 micre contrel/Bust Bete 1:1 @D gensrute bus? dete 5:8

*©
PALSE PaLsE TRUE
‘”a— ame
jrogisterisene]
@B micre contral/Bust Sote 1:1 @D generste dust date 6:8
1
Tave vaLSE TR

ASCI1PGE o, Ay %6, 1087 038

@ micre contrel/Bust Oats 1:1 @D generste bust data 2:8

@B micre contrel/Bust Bota 1:t (D generute busi dote 6:8

@B micre contrel/Bus2 Bate 1:1

@D micre contral/Bus2 Bete 1:1 @D generste bus2 sigasis 135

ABCI. PGB P, Amp 16, 1ID) 830

N,
i

@B micrs coatrol/Bus2 Bate 1:1 U generote Sus2 signels 2:5

LT

@D micre contrsl/Bus2 Dets 1:1 @D generete bus2 sigasis 3:5

LSS e]
Eu—
justsrese]
@B micre conirel/Bus Deta 1:1) gonerate bus2 sigaeis ¢S
1
™E raLeS

@D micre contrel/Bus2 Bats 1:1 () generate Dus? signsls 5:3

§t Emee m geaesate Sk Sigeal e

ABCY.POS Pa, Ang ¥, 1901 80

—-———-——————-L

@ micre contrai/Busl Sigasis 1:1
A Rost ’m
omALL Gug 30y Bue |
L] .
@B micrs contrel/Bus3 Signels 1:1 @ gensrate bus3 signels 128 .

TRUE

§ o Samelmer

ABCY.POS Fn, Asy 16, 199Y 822

@D micre contral/Bus3 Sigaais 121 @D generate bus3 signals 3:8

»_towmt
wnrme | Femomme \ L
jaimivpdate-odii]

@ micre control/Bus3 Sigusis 1:1 35 genarete bus3 signals 4:8

rase raLes ThUS
MAR Beere ~/ "

@D micre contrel/Bus? Sigasis 1:1 @D generste bus3 signels 58

ASC1 PGS Pa_ sy W, 10T £33

@D micre contrei/Bus3 Signais 1:1 G generste dus3 sigasis ¢:8

§1 Vacre Stmuimer

@ micre contral/Bus3 Sigasis 1:1 @D generate bus3 signels 7:0

@B micre contrel/Bus3 Sigasis 1:1 (1D generate bus3 signais 8:8

=4l

§1 Emar @ gonemes bued tigne

@B micre contral/ALY Sigasis 1:1

Mo AU Bus 3Bus 2 Buey

TRAL [TRAIAc COM gy B0

ASCIAOS P, Avp 10. TO0Y 84

@D micre contral/ALY Signeis 1:1 (D generats alu sigasis 1:8

ow w2

[[T
rasg
Ay TRAIAD COP et on

}

@D micre contrel/ALY Signels 1:1 @D generate alv sigasis 2:0

@B micre contral/ALY Signeis 1:1 8D gensrate ol signals 3:9

g e S

D micre control/ALY Signats 1:1 ED generste slv signais 4:9

|

@ micre contrai/ALY Signets 1:1 D gonerate alu sigasts 339

ASCIAQ8 Fu, Aug 16, Y001 006

@ micrs contrel/ALE Sigaais 1:1 B generate sl sigasis 628

@D micrs control/ALE Signele 1:1 @D generate alu sigasls 7:8

@D micre contrel/aALY Signsis 121 @) generate aiv sigaels 0:8

@D micre contrel/ALY Signsis t:1 @ Upgete MIR gisp 11

@ micre control/Mamery Sigasis 1:1

AMCIPGR 4, Aug %, WO &30

@ micre control/mtomery Signeis 1:1 @ generete memery signsis 1:4

2:4

@D micrs control/Mamery Signels 1:1 ED generate momery signals 3:4

@D micre control/Mamery Sigaets 1:1 (D generate memery sigasis 4:4

§1 Erver o gUROIEID MOy MPAD fSED! e

V shifter

@ snitter

r]j Mpus: 0o coniut Sigaeis and
L oeiven it
shitter OVOWENGS floR, NghL, nedw)

ABCYPOR Pa Asg 18, YO0V 07

@D shifter/snifter 1:4

[] PALDS

‘ [l

@B shifter/ahifter 2:4

@D shfter/shifter 3:4

TRUE [T Pm o orter
- ad
SN Lokt
@D shifter/shifter 4:4
R
”
ooseshesssuns

§ Eme m ALLMSARY

@ shifter/shifter 2:4 @D right 1:1

@D shirter/shifter 3:4 @0 toft 121

ASCY.POB F1. Aug ¥, TODY B0

v s

@D AL/ math 1:7

@ ALY/meth 2:7

ASCT PGS A Amy 18, 101 800

@B ALY/meta 3:7

@ LU/ math 4:7

WD ALY/ math 3:7

ARCIRGE P Aug 16, 10 B0Y

ALY/ math 6:7

FAL FALS FALE FAL FALSE |X]

ALY/ matn 2:7

e 2 o o o o

aESesmen oM tra 11y Svnband

oaen

@0 ALN/meth 4:7 @D check bits 15 16 1:2

@0 ALU/meth 4:7 @D chock dils 15 16 2:2

@ ALY/Righ bit 121

ABCYPOR Fn Asp 18 VE01 043

@ au/z

@B MLE/sit net 121

ASCI FQS Fa Asg 98, VDY 04s

e

@B 8LU/DIt ade 131

@ ALU/DIt add 120 @D odd Nst 139

ce

ALE/bit 0dd 1:1 D add Kst 2:9

@D ALU/bit 0dd 121 @D add Net 329

@3 MLV/0it aee 1:1 @D odd list 429

@D ALY/bit add 1:) @D odd Nst 59

ASCYAOS 7 Avg 16 100 246

———-———'—___L

@D ALU/bit add 1:1 @D edd Nst 629

6D MLU/bit odd 131 @D add list 729

M_A_ii

@D SLU/bit 0d¢ 121 @ odd Nst 29

@ 219/0it add 1:1 @D odd Nist 9:3

@ ML/ everfiow 1:2

ASCYPOS F4 g 18, YOY 808

@ sLV/everfiew 2:2

V contral store

@ contrel stere

Oosewphen -~
o s A &
it losd “:.-'..—
e
) mmr) SR e
o sow
cose add inestios W B Convel Sime comtants.

@B contrsi store/resd 1:1

@B contrel stere/u¢d lecoation 1:2

ASCY PSP Avg ¥, YV 847

T —

R canirel stors/sdd leceation 2:2

@D contrel storn/losd 1:4

@D conirel store/iond 1:1 D get-Tie-tent §:}

ASCIPOS o, A 18 180 000

@D contrel sters/iand 1:1 @ read Unes 130

@D contrel stors/losd 1:1 @D Load Store 1:1

@B contrel stere/iait 1:1

ASCY.PQE P, A 8. Y00Y 020

P————-——-——_‘

@D contrel sters/meny lead 1:1

V sterage bank

oonients
L4
@ storege donx
o o o o s (] oo e s e

mpsn. S, Type: Sewtt. Savelt S 3 :
i’el — e, &1 mpu. Bioes Mome; Loasiee Type,

- Convet. B Low
toas Ouowpine: Loats tt Wiy Was B write Oveus: Comms
X K X]
kI vow Smery Lomtes; Lonsien Surm B Sacy Mome: Lowswee Tygs;
M Owgus: Comn ﬁ’.! Canet: e Loe
Sili-rend Bitiowrite OVEIE: Comsnts, IMeper Lanatuan

@ sterage bank/ioad t:1

ABCYPGE P, Ang 10, 1801 831

?___'—

@D sterage bank/iend 1:1 @ get-file-tent 120

WD steruge benk/iend 1:1 @D read Unes 1:1

ASCIPOR Fa Aug 15, 18T OS2

@B stersgs deak/iend 1:1 @ lead sternge 1:3

@D storage bank/resd 19

@D sterage bank/write 1:2

@D sterege daak/write 2:2

ASCYPOB Pn, Awg 40, 1901 639

@3 storage baak/iait t:)

@ sterage bank/init 1:1 (@ build sterage 1:8

D sterege benk/BiN-reed 1:1

@D sterage bank/BiN-rend 1:1 @ sum integers 1:2

ABCI PGS Fa, Aug %0, 1901 634

@D sterage bank/BiIN-rend 1:1 @ sym integers 2:2

@D sterage bank/BIN-write 13

@D sterage bonk/BIN-write 1:1 @D sum lategers 1:2

@ storage bank/BIN-write 1:1 @D sum integers 2:2

V memary dbank

ABCIPOE Fa A 15, 1001 888

@ memary bank/resé 1:1

D memery bank/write 1:2

ASCYPOR P4 Ang 1. 100Y 808

) memery bonk/write 2:2

23 memory bank/write 1:2 @2 sum integers 1:2

@D memery bank/write 1:2 @2 sum intagers 2:2

@ memery benk/ised 1:1

V register bank

oeniems

ASGY POS PR, Awy 18, 199) 837

B register vank

@ register bank/iced 1:1

[1)
4 register ”
(. L]

i
i

ARCIPGS £, Aug W8, 1001 057

0 vaiversel

' Dsserpia: Ouplays Abest Otaing Ovesspmes: (nkiniond owols ané tegitter
ngioye

Avour Miore Sim inftlaitse
Ovosrpten: gudstivates of windows, Dusoptian: Emsontes One minee
autvates eonp dining. ane dualies ' hund

initta) 0 moay ey prrrr4
Cosorpmn Asto for Goased # of ' Dusripmion: masns for ¢ ot oytie
s e enanine
Cysios ayltiple oyoies
Dottrigior Asha woor W omer Goswed
Owerptine: Caomvine & ompte # o maeBuTvetone 1 ssewts, then
L engmngs em
single mesre Many mesre

Dossrpoon. Enahios mens 08
anabie

Desorption: Gess B weer
To o Wann
wateh
"ew. Ginery gt
Cupst: intoger
Sinary-1a1
wow. Biaary Wt
Oupwt: Sving of 19 & O

Sinary-stting

’ Ouesrptinn: Onessbing Mess Ses
L)

@ daery-int 1:1

@ dinsry-int 1:1 @D sum integers 1:2

@B dinary-int 1:1 (7 sum integers 2:2

ASCI PGS The, Aug 15, 101 14:00

@8 cycte 1:1 @ Sus Bate 1:1

@ cycie 1:1 @D ALL eutput 121

ABCIPOS The. Auy 18, 1991 1040

@3 cycie 1:1 @D Update Memery 11

@ cycle 121 @D Vpdate MPC ¥ Display 1:1

cycie t3EDY yi11 @ y Sparations 1:1

i
Jif

ASCIPOS The, Avg 15, 1901 1400

@ cycie 120 @D ¥ y1: @ check benes 1:1

@D cycte 1:t BD Updot y 11 D Y Sperations 1:1 D update MBR disp 1:1

§) Emor dpseet Munir of Mame REVNSRS B GBS

@ meny macre 1:1 @ mecre cycles 1:1

ABCIPOS Tim, Aug 15, 180Y 1000

@D many macre 1:) @D macre cycios 1:1 @3 leop lncrament 1:2

0 many macre t:) @ macre cycles t:1 3D losp incroment 2:2

@B single meacre 1:1

@3 singie mecrs 1:1 @ micre cycles 1:1

@D multipie cycies 133

ABCIPOR T, Aug 1§, 1Bt 140

@ Cyctes 121

$ Emer Ousred 5 of Mshing Cysine Ryt

@ nt-dinery 1:1

3 int-dinery 1:1 @& duid list 121

B nt-binary 1:1 B0 duilg Nst 1:1 €D convert aum to boel 1:2

int-binary 1:1 @D buitd Hst 1:1 @D convert num to boot 2:2

ABCI PGS The, Avg 15, 180 144

@D binary-string t:1

@ dinary-string 1:1 @ dinery-escii 1:3

@D dinary-string 1:1 @B piasry-escil 2:3

@R dinery-string 1:1 @D vinery-esci 3:3

@D string-binary 1:?

string-biaery 1:1 @B escii-bingry 1:3

ASCIFOS Thy, Asg 15, 1800 10:01

@ string-dinary 1:1 @D escii-binery 2:3

@ string-diasry 1:1 @D sscii-dinary 5:3

§1. oner & amel-otary

@D initiglize t:1

4
s
-
14
H
H
s
H
3
s
-
<
s
&

@B initielize 1:1 @D initiehize Single registers t:1

ASCIPGS Thw, Aup 1S, 1991 Y401

@B initiolize 1:) @D Initiskize Siagle registers 1:1

§! CACC mer® PC war W war)
5 thee Sommer

@ Initiolize 1:1 @D 1nit MPC Bisp. 128

5

|a

;
i
{
a

@ et dort 121

3

@D el dert 1:1 @ Remove 1:)

j

2l

sims @ etivele

My vy Su
& Show ump

§t Chwre Smuiste” “Song” WPRC Windew “Abow WP Miwe Slnuiser)

ABCIPGS Thu, Asp 15, 1O01 1001

@D sbsut Micre Sim 134

@B avout Micrs Sim 1:1 B Disdiey Dete 1:)

@D aveut Micrs Sim 1:1 @B Dispiey Time 13}

@D wetch 121

ASCIPOS Tau, amg 15, 1001 YO0

@D snubis 121
L]
@ cisedis 121
L]
Hestien
faurrom]
fmenus | paLss
jonanient |
.]

ASCI PGS Thu, Awg 15, 1800 1441

LIST OF REFERENCES

Apple Computer, Inc., “Inside Macintosh Volume 1.” Addison-Wesley Publishing
Company, Inc. Reading, MA, 198S.

Cox, P. T. and Pietrzykowski, T. “Prograph: a Pictorial View of Object-Oriented
Programming.” Technical Report 8902, The Gunakara Sun Systems, Ltd., 1989.

de Paula, E. G. and Nelson, M. L. “Designing a Class Hierarchy.” Proceedings of the
Technology of Object-Oriented Languages and Systems Interational Conference 5
(Tools USA 1991), Santa Barbara, CA, July 1991, pp. 203-218.

Frei, M. “Simulating von-Neumann Machines in an Object Oriented Environment.” IEE
Colloquium, November 1989, pp. 5/1-5/6.

Micallef, J. “Encapsulation, Reusability and Extensibility in Object-Oriented Programming
Languages.” Journal of Object-Oriented Programming, Vol. 1, No. 1, April/May
1988. pp. 12-35.

Mulcare, D., “Object-Based Discrete-Event Simulation of Concurrent Real-Time System
Architectures.” Proceedings of the 1990 Summer Computer Simulation
Conference, July 1990, pp. 184-190.

Nelson, M. L. “An Introduction to Object-Oriented Programming.” Technical Report
NPS52-90-024, Naval Postgraduate School, Monterey, CA, April 1990.

Papazoglou, M., Pawlak, A., Wrona, W. “Multiprocessor Modelling: An Example of
Object-Oriented Development.” Microprocessing and Microprogramming, 25,
1989, pp. 213-219.

Shiva, S. G. “Computer Design & Architecture.” HarperCollins, New York, NY, 1991.

Stefik, M., and Bobrow, D. “Object-Oriented Programming: Themes and Variations.” The
Al Magazine, Vol 6, No. 4, Winter 1986, pp. 40-62.

Sugimoto, A., Abe, S., Kuroda, M., and Katou, S., “An Object-Oriented approach for
Interactive Microprogram Simulator.” Systems and Computer in Japan, Vol. 19,
No. 1, 1988, pp. 47-57.

Tanenb;iqum, Aé S. “Structured Computer Organization.” Prentice-Hall, Englewood Cliffs,
J, 1984,

The Gunakara Sun Systems “Prograph Reference Manual.” The Gunakara Sun Systems,
Ltd., Halifax, Nova Scotia (Canada), July 1990.

195

Tomek, L., “Simulation of Computer Architecture.” Mini and Microcomputers and their

Applications. Proceedings of the ISMM International Symposium, pp. 493-495,
June 1985 pp. 493-495.

Wegner, P. “Dimensions of Object-Based Language Design.” Special Issue of SIGPLAN
Notices; Vol 22, No. 12, Dec 1987 pp. 168-182.

196

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

LT Kevin A. Fontes
4811 S. Hunt Road
Gustine, CA 95322

MAJ Michael L. Nelson, Code CS/Ne
Naval Postgraduate School
Monterey, CA 93943-5100

Amr Zaky, Code CS/Za
Naval Postgraduate School
Monterey, CA 93943-5100

Robert B. McGhee, Code CS
Naval Postgraduate School
Monterey, CA 93943-5100

CDR Thomas J. Hoskins, Code 37
Naval Postgraduate School
Monterey, CA 93943-5100

Lou Stevens, Code CS/St

Naval Postgraduate School
Monterey, CA 93943-5100

197

No. Copies

